

Temperature Data for Bayou des Allemands at Des Allemands, LA (LDEQ station 0292) Data retreived from LDEQ website (http://www.deq.state.la.us/surveillance/wqdata/wqnsites.stm)

summer 90th percentile 30.80 summer 90% saturated DO 6.7064153

winter 90th percentile 21.68 interpolated

	WATER TEMP				WATER TEMP		
DATE	(C)	Season	Percentile	DATE	(C)	Season	Percentile
10/11/1994	21.30	summer	1.8%	12/12/1995	10.40	winter	1.9%
10/15/1996	21.70	summer	5.4%	12/5/2000	12.10	winter	5.6%
10/13/1992	22.10	summer	8.9%	2/11/1992	12.20	winter	9.3%
10/10/1995	22.40	summer	12.5%	2/8/2000	12.51	winter	13.0%
10/15/1991	23.50	summer	16.1%	2/10/1998	12.80	winter	16.7%
10/12/1993	23.70	summer	19.6%	2/13/1996	13.00	winter	20.4%
10/14/1997	24.10	summer	23.2%	2/18/1997	13.40	winter	24.1%
10/31/2000	24.62	summer	26.8%	2/14/1995	13.40	winter	27.8%
6/11/1991	26.20	summer	30.4%	12/9/1997	13.97	winter	31.5%
10/3/2000	26.21	summer	33.9%	12/13/1994	14.00	winter	35.2%
6/14/1994	26.60	summer	37.5%	12/14/1993	14.00	winter	38.9%
5/9/2000	27.28	summer	41.1%	12/10/1996	15.10	winter	42.6%
6/10/1997	27.50	summer	44.6%	12/15/1992	15.10	winter	46.3%
8/13/1996	27.90	summer	48.2%	4/15/1997	15.70	winter	50.0%
6/11/1996	28.00	summer	51.8%	2/5/1991	15.70	winter	53.7%
9/12/2000	28.59	summer	55.4%	12/10/1991	15.80	winter	57.4%
6/13/1995	28.60	summer	58.9%	1/11/2000	16.45	winter	61.1%
6/13/2000	29.16	summer	62.5%	4/7/1992	17.70	winter	64.8%
8/13/1991	29.20	summer	66.1%	2/8/1994	17.80	winter	68.5%
8/15/1995	29.90	summer	69.6%	3/14/2000	18.42	winter	72.2%
8/9/1994	30.02	summer	73.2%	4/9/1996	18.50	winter	75.9%
8/10/1993	30.30	summer	76.8%	4/11/2000	19.64	winter	79.6%
8/11/1992	30.40	summer	80.4%	4/13/1993	21.50	winter	83.3%
6/16/1992	30.40	summer	83.9%	4/4/1995	21.60	winter	87.0%
8/12/1997	30.80	summer	87.5%	4/14/1998	21.70	winter	90.7%
6/15/1993	30.80	summer	91.1%	4/12/1994	24.20	winter	94.4%
8/8/2000	31.07	summer	94.6%	4/16/1991	24.40	winter	98.1%
7/11/2000	32.09	summer	98.2%				

FILE: R:\PROJECTS\2110-611\CD_DES_ALL\APP U 90TH PERC TEMP\0292_90TH_PERCENTILE_TEMPS.XLS

Critical Flow Calculations

CALCULATION OF AVERAGE TIDAL FLOW FOR BAYOU DES ALLEMANDS Based on LDEQ flow measurements and dye study results in Bayou des Allemands

						Data	a for LDEQ c	Data for LDEQ dye study results	sults		Absolute
	Starting	¥	ADCP flow data	ā	Location						value
	and ending			Elapsed	of center	Distance	Elapsed				of flow
	date/times	Measured	Avg flow	time	of mass	traveled	time	Velocity	Cross	Avg flow	multiplied
	for this	or estim.	during this	that flow	(meters	since	since	since	section	since	by length
	averaging	flow	this time	occurs	d/s from	prev. run	prev. run	prev. run	area	prev. run	of time
Source of data	period	(cfs)	(cfs)	(hours)	injection)	(feet)	(hours)	(ft/sec)	(ft2)	(cfs)	(cfs*hrs)
Extrapol. ADCP	9/9/02 14:08	-3164	2167	00 76							75036
Extrapol. ADCP	9/10/02 14:08	-3164	† 2 2	90. .							0000
Extrapol. ADCP	9/10/02 14:08	-3164	USVC	18 70							46608
Interpol. ADCP	9/11/02 08:55	-1796	-2400	67.01							0000+
Dye injection	9/11/02 08:55				0	8686	1 13	910	3209	1001	4502
Dye run 1	9/11/02 13:03				-708	-2323	. 5	01.0-	0.780	1601-	4302
Dye run 1	9/11/02 13:03				-708	UVV	1 04	610	3209	815	850
Dye run 2	9/11/02 14:03				-842) † †	0.1	70.12	0.60	C C C	200
Dye run 2	9/11/02 14:03				-842	923	3 17	300	3209	352	7 7 7
Dye run 3	9/11/02 17:14				-1018			0.0	6.60	200-	2
Dye run 3	9/11/02 17:14				-1018	82968	00 00	EV 0	8314	3600	75937
Dye run 4	9/12/02 14:08				8912	0200	06:05	9	200	2000	10501

	72.00 hrs	2007 of
	Total length of time =	- mod opposite bottom omiT
Flows measured with Acoustic Doppler Current Profiler (ADCP) in	Bayou des Allemands at Hwy 90 for interpolation and extrapolation above:	(3c) (100)

204250 cfs*hrs

Sum of flow * time =

2837 cfs		946 cfs	26.8 m3/sec
Time weighted average flow =		1/3 of average tidal flow =	II
Flow (cfs)	-3012	-1647	
Date / time	9/10/02 16:13	9/11/02 10:58	

Wind Aided Reaeration for Bayou des Allemands Projection (020201)

Wind Aided Reaeration Coefficient Equation (Eq.3-23 from Rates, Constants, and Kinetics publication)

$$K_{L \text{ with wind}} = K_{L \text{ without wind}} [1+(0.2395V_w^{1.643})]$$

Equation 1

V_w = wind velocity in meters per second

 K_2 = reaeration in 1/day that does not account for wind effects. For Louisiana equation use K_2 = 0.664/D.

D = depth in meters

 $K_L = K_2 * D$ (=oxygen transfer coefficient "a" in model)

Formula to correct wind speed for elevation (obtained from LDEQ):

$$V_{\text{w@ height z}} = V_{\text{w@ height s}} [(z/s)^{0.143}]$$

Equation 2

CALCULATIONS FOR PROJECTION:

Long term average wind speed for August

= 5.9 mph = 5.1 knots

August was month with lowest average wind speed for summer months (May-Oct)

Source of long term average wind speed: NOAA (2001)

	Average	Average		Height for	Wind Speed		
	Wind	Wind	Height of Wind	Calculating	at Surface	K _∟ without	K _L with wind
	Speed	Speed	Measurement	Wind-Aided	using Eqn 2	wind	using Eqn 1
Station	(knots)	(m/s)	(m)	K_{L} (m)	(m/s)	(m/day)	(m/day)
New Orleans Intl. Airport	5.1	2.6	10	0.1	1.4	0.664	0.93

FILE: R:\PROJECTS\2110-611\CD_DES_ALL\APP W CALC KL (PROJ)\PROJ_WIND_SPEED.XLS

Plot of Projection Model DO

Predicted DO for Upper Bayou Des Allemands Projection (J\gm) OG 4 ω 5 -

COMMISSION WATER QUALITY STREAM MODEL	UPDATED DECEMBER 3, 1990
WATER QUALITY	UPDATED
COMMISSION	VERSION 3.3
ATE;	QUAL-TX

01/23/04 13:46:33

\$\$\$ DATA TYPE 1 (TITLES AND CONTROL CARDS) \$\$\$

	AUAL-TX summer projection simulation, Upper Bayou Des Allemands, Projection Run ECHO APS INTE INA OAD HETR XXYG
	n E
	projectio
CONTROL TITLES	aual-TX summer Projection Run ECHO CAPS INTE FINA LOAD METR VYG
CONT	QUAL- Proje ECHO CAPS INTE FINA LOAD METR OXYG
	YES YES YES YES YES YES
CARD TYPE	CNTROLO1 CNTROLO3 CNTROLO4 CNTROLO5 CNTROLO6 CNTROLO7 CNTROLO8 CNTROLO8 CNTROLO9 CNTROLO9 CNTROLO9

\$\$\$	
2 (MODEL OPTIONS)	NOTION
(MODEL	MODEL
TYPE 2	
DATA	TYPE
\$2	CARD

	n cond
_	: MATERIAL I
MODEL OPTION	TEMP SALI CONSERVATIVE MATERIAL I : CONS DISS BIOC NITR PHOS CHLO MACR COLI
	NO N
CARD TYPE	MODOPT01 MODOPT02 MODOPT04 MODOPT05 MODOPT07 MODOPT07 MODOPT09 MODOPT109 MODOPT11 MODOPT11 MODOPT11

IN umhos

\$\$\$ DATA TYPE 3 (PROGRAM CONSTANTS) \$\$\$

VALUE	2000,00000
	ни
DESCRIPTION OF CONSTANT	MAXIMUM ITERATION LIMIT KL MININUM
CARD TYPE	PROGRAM PROGRAM

4	
0	
0	
٠,	

															,
														ELEM NUM	. 15 40 45 . 55
													1	BEGIN ELEM NUM	11 11 46 46
														ELEMS PER RCH	5 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
														REACH LENGTH KM	1.25 0.50 2.50 0.50
														ELEM LENGTH KM	0.1250 0.1000 0.1000 0.1000
	TS) \$\$\$													END REACH KM	31.75 31.25 28.75 28.25 27.25
0000	ICIEN				VALUE			VALUE	0000		VALUE				55555
416.00000	Е СОЕFF				7			>	10.0000		*			BEGIN REACH KM	33.00 31.75 31.25 28.75 28.25
н	S FOR RAT								11						
- DAILY RADIATION	\$\$\$ DATA TYPE 4 (TEMPERATURE CORRECTION CONSTANTS FOR RATE COEFFICIENTS) \$\$\$	ODE THETA VALUE	1.0500	(TEMPERATURE DATA) \$\$\$	DESCRIPTION OF CONSTANT		E CONSTANTS) \$\$\$	DESCRIPTION OF CONSTANT	SATURATION CONSTANT	\$\$\$ DATA TYPE 7 (MACROPHYTE CONSTANTS) \$\$\$	DESCRIPTION OF CONSTANT		\$\$\$ DATA TYPE 8 (REACH IDENTIFICATION DATA) \$\$\$	NAME	Bayou Des Allemands Bayou Des Allemands Bayou Des Allemands Bayou Des Allemands Bayou Des Allemands
TOTAL	YPE 4 (TEM	RATE CODE	BENTHAL NH3 DECA	NTS TYPE 5	DESC		PE 6 (ALGA	DESCR	LIGHT	PE 7 (MACR	DESCR		PE 8 (REAC	REACH ID	1 DA 3 DA 6
PROGRAM ENDATAO3	\$\$\$ DATA T	CARD TYPE	BSOD THETA ENDATA04	\$\$\$ CONSTANTS TYPE 5	CARD TYPE	ENDATA05	\$\$\$ DATA TYPE 6 (ALGA	CARD TYPE	LIGHT ENDATAO6	\$\$\$ DATA TY	CARD TYPE	ENDATA07	\$\$\$ DATA TY	CARD TYPE	REACH ID REACH ID REACH ID REACH ID REACH ID

56 65 65 75 85 75 85 85 95 105 112 112		MANNINGS "N"	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		DEPTH "E"	0.000
1.00 1.00 1.00 0.70			
0.1000 0.1000 0.1000 0.1000 0.1000	_	DEPTH "D"	0.0000000000000000000000000000000000000
8.8 8.8 8.8 8.8 8.8 21.5		픈 -	
55555		DEPTH "C"	1.520 1.520 1.840 2.160 2.160 3.080 3.080 2.790 2.790 2.500
24.25 25.25 22.25 22.25 22.25 22.25			
	ENTS) \$\$\$	VELOCITY "B"	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Bayou Des Allemands Bayou Des Allemands Bayou Des Allemands Bayou Des Allemands Bayou Des Allemands Bayou Des Allemands	(ADVECTIVE HYDRAULIC COEFFICIENTS) \$\$\$	VELOCITY "A"	0.00045500 0.00055300 0.00055300 0.00078000 0.00178000 0.00147000 0.00125000 0.00125000 0.00138000 0.00368000
Bayou Bayou Bayou Bayou Bayou Bayou	CTIVE	0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(ADVE	ЕАСН	100450651
9 × 8 6 0 1 1 1	6	22	
REACH ID REACH ID REACH ID REACH ID REACH ID REACH ID REACH ID	\$\$\$ DATA TYPE	CARD TYPE	HYDR-1 HYDR-1 HYDR-1 HYDR-1 HYDR-1 HYDR-1 HYDR-1 HYDR-1

\$\$\$
COEFFICIENTS)
HYDRAUL IC
(DISPERSIVE
10
TYPE
DATA
\$\$\$

CARD TYPE	REACH	10	TIDAL	DISPERSION	DISPERSION 11B11	DISPERSION "C"	DISPERSION "D"
HYDR-2	 -	DA	0.00	4.500	00000	0.000	000.0
HYDR-2	2	ρĄ	0.00	4.500	0000	00000	0000
HYDR-2	m	PΑ	0.00	4.500	0000	0000	0000
HYDR-2	4	Δ	0.00	4.500	000.0	0000	000.0
HYDR-2	7	ρĄ	0.00	4.500	0000	00.00	0000
HYDR-2	9	ρĄ	0.00	4.500	0.000	0.00	000
HYDR-2	7	DA	0.00	4.500	0.000	0.00	0000
HYDR-2	80	DA	0.00	4.500	0000	0000	0000
HYDR-2	0	DΑ	0.00	4.500	0000	0.00	0000
HYDR-2	10	DΑ	0.00	4.500	0000	0.000	000.0
HYDR-2	-	PΑ	0.00	4.500	0000	0.000	000.0
ENDATA10							

	CHL A MACRO	35.00 0.00 35.00 0.00 35.00 0.00 35.00 0.00 34.00 0.00 33.00 0.00 31.00 0.00 31.00 0.00	BOD BOD CONV SETT TO SOD	0.000 0.000	DENIT RATE	0.00000
	PHOS	20.00 20	AEROB BOD DECAY	0.140 0.140 0.140 0.140 0.140 0.140 0.140 0.140 0.140 0.140	PHOS	0.00.00
	NO3+2	0.05 0.05 0.05 0.05 0.05 0.05	TS) \$\$\$ BKGRND SOD	0.350 0.400 0.400 0.400 0.400 0.450 0.450 0.350	NH3 SRCE	0.01
	NH3	0.14 0.14 0.14 0.17 0.33 0.43 0.43	COEFFICIENTS) \$\$\$ KZ BKGRNI "C" SOD	000000000000000000000000000000000000000	NH3 DECA	0.000
	00	6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.	800 18 K2	0.000	CIENTS) \$\$\$ ORGN CONV TO NH3 SRCE	00.1.00
\$\$\$	SALIN	0.29 0.29 0.28 0.28 0.27 0.27	OXYGEN DE K2 "A"	0.000	US COEFFI ORG-N SETT	00000
\$\$\$ DATA TYPE 11 (INITIAL CONDITIONS) \$\$\$	TEMP	30.80 30.80 30.80 30.80 30.80 30.80 30.80	\$\$\$ DATA TYPE 12 (REAERATION, SEDIMENT OXYGEN DEMAND, CARD TYPE REACH ID K2 K2 OPT "A"	ท่ พ่ พ	13 (NITROGEN AND PHOSPHORUS COEFFICIENTS) \$\$\$ REACH ID ORG-N ORG-N ORGN CONV DECA SETT TO NH3 SRCE	0.02
TIAL	0	A A A A A A A A A A A A A A A A A A A	ERAT I ID	D D D D D D D D D D D D D D D D D D D	ROGEN ID	0 A A A A
PE 11 (INI	REACH	-0w4rav8v6E	PE 12 (REA REACH	- 0 w 4 w 0 / 8 0 0 f	PE 13 (NIT	0 W 4 H
\$\$\$ DATA TY	CARD TYPE	INITIAL ENDATA11	\$\$\$ DATA TYF	COEF-1 COEF-1 COEF-1 COEF-1 COEF-1 COEF-1 COEF-1 COEF-1 COEF-1	\$\$\$ DATA TYPE CARD TYPE	COEF-2 COEF-2 COEF-2 COEF-2

ANAER BOD DECAY 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

																	•		•
	9	RESP	0.00		9.0	9.0	0.0	8.6	0.0	0.00				1	INFLOW/DIST				
0.00000	9	GROW	0.0	.0	8.6	8.6	0.00	3.5	0.0	0.00					CM-11 I				
0.00		ALGAE RESP	0.10	0.10	0.10	0.10	0.10	9.0	0.10	0.10				VES) \$\$\$	CM-I C				
0.05 0.05 0.05 0.06 0.06		ALGAE GROW	1.62	1.62	1.62	1.62	1.62	79.	1.62	1.62				CONSERVATI	SALIN				NO3+2
0.0 0.0 0.0 0.0 0.0	NWO CIN	ALG CONV TO SOD	0.08	0.08	80.0	0.08	0.08	8 8	0.08	0.08	\$\$\$	NCM CONV TO SOD		INITY, AND	TEMP			\$\$\$	NH3 N
0.1.1.00	S) \$\$\$ (S.	ALGAE SETT	0.50	0.50	0.50	0.50	0.50	0.0	0.50	0.50	15 (COLIFORM AND NONCONSERVATIVE COEFFICIENTS) \$\$\$	NCM N		RATURE, SAL	INFLOW			D NITROGEN)	ORG-N
0.00	COEFFICIENT	ALGAE: CHL A	0.060	0,060	0,060	0.000	090.0	0.000	090.0	0.060	RVATIVE COE	NCM DECAY		LOW, TEMPE	36			00, BOD, AN	800
0.02 0.02 0.02 0.02 0.02	MACROPHYTE	DEPTH	1.00	8.0.	8.	. 6.	8.6		.68	1.00	ID NONCONSE	COLIFORM DIE-OFF		. DATA FOR	OUTFLOW			DATA FOR D	00
D A A D D A A D D A A D D A A D D A A D D A A D D A A D D D A D	GAE AND ?	≘	DA								LIFORM AM	0		CREMENTAL	Q			REMENTAL	01
r 8 9 0 1	E 14 (ALC	KEACH	- ~	3 12	4 u	o <u>'</u> 9	~ ∘	0 0	10		E 15 (COI	REACH		: 16 (INC	REACH			17 CINC	REACH
COEF-2 COEF-2 COEF-2 COEF-2 COEF-2 ENDATA13	\$\$\$ DATA TYPE 14 (ALGAE AND MACROPHYTE COEFFICIENTS) \$\$\$	CAKD ITPE	COEF-3	COEF-3	COEF-3	COEF-3	COEF-3	COEF-3	COEF-3	COEF-3 ENDATA14	\$\$\$ DATA TYPE	CARD TYPE	ENDATA15	\$\$\$ DATA TYPE 16 (INCREMENTAL DATA FOR FLOW, TEMPERATURE, SALINITY, AND CONSERVATIVES) \$\$\$	CARD TYPE	ENDATA16		\$\$\$ DATA TYPE 17 (INCREMENTAL DATA FOR DO, BOD, AND NITROGEN) \$\$\$	CARD TYPE

1, AND NONCONSERVATIVES) \$\$
₹
COL I FORM
EMENTAL DATA FOR PHOSPHORUS, CHLOROPHYLL, COLIFORM,
PHOSPHORUS,
공
DATA
Ş
<u>დ</u>
TYPE
ATA
\$\$\$ DATA TYPE 18 (IN

CARD TYPE REACH ID PHOS CHL A COLI NCM ENDATA18

\$\$\$ DATA TYPE 19 (NONPOINT SOURCE DATA) \$\$\$

		0	0.0	0.00	0.00	0.0	0.0	0.00	0.00	0.00	0.00
COLI	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.0	0.00	0.00
ORG-N	00.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
800	900.009	450.00	300.00	75.00	15.00	15.00	15.00	37.50	37.50	37.50	15.00
2	ρĄ	ρĄ	ρĄ	DA	DΑ	DA	DΑ	DΑ	DA	DA	DA
REACH	-	2	М	4	5	9	7	∞	٥	9	;
CARD TYPE	NONPOINT	NONPOINT	NONPOINT	NONPOINT	NONPOINT	NONPO! NT	NONPOINT	NONPOINT	IONPOINT	IONPOINT	NONPOINT

\$\$\$ DATA TYPE 20 (HEADWATER FOR FLOW, TEMPERATURE, SALINITY AND CONSERVATIVES) \$\$\$

CM-11	000.0
CM-I	427.000
SALIN	0.000
TEMP	30.800
FLOW	26.80000
TINO	0
NAME	Lake Des Allemands
ELEMENT	•
CARD	HDWTR-1 ENDATA20

\$\$\$ DATA TYPE 21 (HEADWATER DATA FOR DO, BOD, AND NITROGEN) \$\$

N03+2	0.05
NH3	0.12
ORG-N	1.58
800	3.79
00	6.71
NAME	Lake Des Allemands
ELEMENT	. - , ,
CARD TYPE	HDWTR-2 ENDATA21

										NO3+2	10.00			
										% NITRIF	0.00	1		
VES) \$\$\$							CM-11	0.000		NH3	0.12	/ES) \$\$\$		
CONSERVATI	NCM	0.00				IVES) \$\$\$	CM-1	614.000 503.000		ORG-N	1.58	CONSERVATIV	NCM	00.0
, AND NON	COLI	0.00		•		CONSERVAT	SAL	0.000		% BOD RMVL	0.00	AND NON	1700	0.00
COL I FORM	CHL A	51.00				ITY, AND (TEMP	30.800 30.800	\$	80D	3.79	COL I FORM,	CHL A	51.00 0.00
CHLOROPHYLL,	PHOS	0.12	•			ATURE, SALIN	FLOW	0.00000 30	NITROGEN) \$	00	2.00	CHLOROPHYLL,) PHOS	5.00
\$\$\$ DATA TYPE 22 (HEADWATER DATA FOR PHOSPHORUS, CHLOROPHYLL, COLIFORM, AND NONCONSERVATIVES) \$\$\$	NAME	Lake Des Allemands	N DATA) \$\$\$	UPSTRM NAME ELEMENT		\$\$\$ DATA TYPE 24 (WASTELOAD DATA FOR FLOW, TEMPERATURE, SALINITY, AND CONSERVATIVES) \$\$\$		Providence Canal Collier Fisheries	\$\$\$ DATA TYPE 25 (WASTELOAD DATA FOR DO, BOD, AND NITROGEN) \$\$\$	NAME	Providence Canal Collier Fisheries	\$\$\$ DATA TYPE 26 (WASTELOAD DATA FOR PHOSPHORUS, CHLOROPHYLL, COLIFORM, AND NONCONSERVATIVES) \$\$\$	NAME	Providence Canal Collier Fisheries
22 (HEADWAT	ELEMENT	£	23 (JUNCTIO	JUNCTION U		24 (WASTELO)	ELEMENT NAME	8 Prov.	25 (WASTELO	ELEMENT N/	8 112 CC	26 (WASTELO	ELEMENT NA	8 112 20
\$\$\$ DATA TYPE	CARD TYPE	HDWTR-3 ENDATA22	\$\$\$ DATA TYPE 23 (JUNCTION DATA) \$\$\$	CARD TYPE	ENDATA23	\$\$\$ DATA TYPE	CARD TYPE EL	WSTLD-1 WSTLD-1 ENDATA24	\$\$\$ DATA TYPE	CARD TYPE	WSTLD-2 WSTLD-2 ENDATA25	\$\$\$ DATA TYPE	CARD TYPE	WSTLD-3 WSTLD-3 ENDATA26

\$\$\$ DATA TYPE 27 (LOWER BOUNDARY CONDITIONS) \$\$\$

CONCENTRATION	30.800 DEG C	0.275 PPT	493.000 umhos	0.000	5.160 MG/L	3.790 MG/L	1.270. MG/L	0.430 MG/L	0.050 MG/L	0.120 MG/L	31.000 UG/L	0.000 #/100 ML	0.000	
	11	11	11	II	H	11	11	II	н	H	11	H	н	
CONSTITUENT	TEMPERATURE	SALINITY	CONSERVATIVE MATERIAL I	CONSERVATIVE MATERIAL II	DISSOLVED OXYGEN	BIOCHEMICAL OXYGEN DEMAND	ORGANIC NITROGEN	AMMONIA NITROGEN	NITRATE + NITRITE	PHOSPHOROUS	CHLOROPYHLL A	COLIFORM	NONCONSERVATIVE MATERIAL	
CARD TYPE	LOWER BC	LOWER BC	LOWER BC	LOWER BC	LOWER BC	LOWER BC	LOWER BC	LOWER BC	LOWER BC	LOWER BC	LOWER BC	LOWER BC	LOWER BC	ENDATA27

\$\$\$ DATA TYPE 28 (FLOW AUGMENTATION DATA) \$\$

ORDER OF AVAIL SOURCES TARGET AVAIL HDWS REACH CARD TYPE

ENDATA28

\$\$\$ DATA TYPE 29 (SENSITIVITY ANALYSIS DATA) \$\$\$

9 T03 COL 5 4 TOO COL 3 COL 2 PARAMETER COL 1 CARD TYPE

COL 8

COL 7

ENDATA29

\$\$\$ DATA TYPE 30 (PLOT CONTROL CARDS) \$\$\$

ENDATA30

....NO ERRORS DETECTED IN INPUT DATA

.....HYDRAULIC CALCULATIONS COMPLETED

.....TRIDIAGONAL MATRIX TERMS INITIALIZED

.....PHOTOSYNTHETIC RATES CONVERGENT IN 8 ITERATIONS

.....OXYGEN DEPENDENT RATES CONVERGENT IN 1 ITERATIONS

LETED	
CONSTITUENT CALCULATIONS COMPLETED	
CONSTITUENT	STERMENIATE REPORT

INTERI Dissol MG/L	INTERMEDIATE REP DISSOLVED OXYGEN MG/L	INTERMEDIATE REPORT DISSOLVED OXYGEN MG/L					QUAL- Proje	QUAL-TX summer Projection Run	projection	simulation	, Upper	QUAL-TX summer projection simulation, Upper Bayou Des Allemands, Projection Run	emands,
1D	RCH	ELEM	0+	+	+5	43	*	,	9+	2+	8+	6+	
DA	-	-	6.27	6.17	6.08	6.00	5.92	5.86	5.80	5.75	5.70	2.66	
DA	7	-	5.63	2.60	5.57	5.55	5.52						
DA	M	16	5.50	2.47	5.45	5.43	5.41	5.39	5.38	5.36	5.35	5.34	
DA	2	56	5.33	5.32	5.31	5.30	5.30	5.29	5.29	5.29	5.28	5.28	
DA	2	36	5.28	5.28	5.28	5.27	5.27						
DA	4	14	5.27	5.26	5.26	5.25	5.25						
DΑ	īΟ	46	5.25	5.24	5.54	5.24	5.24	5.24	5.23	5.23	5.23	5.23	
DA	9	26	5.22	5.21	5.21	5.20	5.19	5.19	5.18	5.18	5.17	5.16	
DA	7	99	5.15	5.14	5.13	5.12	5.12	5.11	5.10	5.09	5.08	5.07	
DA	œ	92	5.07	5.06	5.05	5.04	5.04	5.03	5.02	5.02	5.01	5.01	
DA	6	86	5.01	5.01	5.01	5.00	2.00	2.00	2.00	5,00	2.00	2.00	
DA	9	96	5.01	5.01	5.02	5.02	5.02	5.03	5.03	5.04	20.0	5.04	
DA	Ξ	106	5.04	5.05	5.05	5.05	5.06	5.07	5.10				
INTER	NTERMEDIATE	E REPORT											
BIOCHE	EMICAL	SIOCHEMICAL OXYGEN DEMAND	EMAND				QUAL-	QUAL-TX summer	projection	simulation	, Upper I	projection simulation, Upper Bayou Des Allemands,	emands,
MG/L							Proje	Projection Run					
10	RCH	ELEM	Q.	Ŧ	7	£ ,	7+	\$	9	Z +	\$	6+	
DA	_	-	3,5	3.5	3.4	3.4	3,3	3.2	3.2	3.2	3.1	3.1	
ρĄ	7	7	3.1	3.1	3.0	3.0	3.0						
DA	M	16	2.9	5.9	2.9	2.8	2.8	2.8	2.7	2.7	2.7	5.6	
ρĄ	М	92	5.6	5.6	2.5	2.5	2.5	2.4	2.4	2.4	2.3	2.3	
DA	M	36	2.3	2.3	2.2	2.2	2.2						
DA	4	41	2.2	2.2	2.2	2.2	2.1					1	
DA	Ŋ	94	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.0	2.0	
DA	9	26	2.0	5.0	2.0	5.0	2.0	2.0	1.9	1.9	1.9	1.9	
DA	7	99	1.9	1.9	1.9	1.8	1.8	1.8	1.8	1.8	1.8	1.8	
DA	∞	92	1.8	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	
DA	6	98	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	
DA	9	%	1.5	1.5	1.5	1.5	1.5	7.5	1.5	1.5	7.	1.5	-
DA	1,	106	1.5	1.5	1.5	1.5	1.6	. ھ	5.6				
NTER	MEDIAT	NTERMEDIATE REPORT						i	•		:		
RGANI	RGANIC NITROGEN	ROGEN					- dual		projection	simulation	, Upper E	projection simulation, Upper Bayou Des Allemands,	emands,
16/L							Proje	Projection Run					

										lemands,														lemands,							
6+	1.51	1.46		1.40	1.39	1.37	1.55 45.1	1.33		QUAL-TX summer projection simulation, Upper Bayou Des Allemands, Projection Run	6+	0.13	7,	0.15		;	0.18	0.20	17.0	23.0	0.24		•	Upper Bayou Des Allemands,	6+	0.05	90.0	0.07		0.08	
8+	1.51	1.46		1.40	1.39	1.37	1.36 2.5	1.33		n, Upper I	4	0.13	7,	0.16		;	0.18	0.50	7.0	22.0	0.24				4	0.05	90.0	0.07		0.08	
/ +	1.52	1.47		1.40	1.39	1.37	1.36 34.26	1.33		simulatio	2 +	0.13	ر بر	0.15		;	0.18	0.19	0.5	2.5	0.24			simulation,	2 +	0.05	90.0	90.0		0.08	
9	1.52	1.47		1.40	1.39	1.37	1.36 7.5	1.33	1.30	orojection	9+	0.13	7. 1.	0.10		;	0.18	0.13	- 7. 0	23.0	0.24	0.33		rojection	9+	0.05	90.0	90.0		0.07	
5	1.53	1.47		1.40	1.39	1.38	 8. F.	1.33	1.32	QUAL-IX summer p Projection Run	+5	0.13	7,	0.15		;	0.18	9.19	2,50	23.0	0.24	0.27	:	QUAL-TX summer projection Projection Run	7	0.05	90.0	90.0		0.07	••••
7+	1.53	1.48	1.42	1.41	1.39	1.38	1.36 3.5	1.33	1.32	QUAL-1 Projec	* +	0.13		0.16	0.17	0.17	0.18	 	0.60	23.0	0.24	0.25		QUAL-T Projec	7+	0.05	0.06	0.06	0.07	0.07	
,	1.54	1.48	1.42	1.41	1.39	1.38	1.36 35.5	1.3	1.33		+3	0.13	2,5	0.16	0.17	0.17	0.18	0.10	0.20	2,0	0.24	0.25			£	0.05	0.05	0.06	0.07	0.07	
7	1.55	1.48	1.42	1.41	1.39	1.38	 3. 5.	1.34	1.33		+5	0.13		0.16	0.17	0.17	0.18	0.19	2.6	2.0	0.23	0.24			7	0.05	0.05	0.06	0.07	0.07	
+	1.55	1.49	1.42	1.41	1.40	1.38	1.37	1.34	1.33		+	0.13	- c	0.16	0.17	0.17	0.18	6.0	0.6	2,0	0.23	0.24			Ŧ	0.05	0.05	0.06	0.07	0.07	
0+	1.56	1.49	1.43	1.41	1.40	1.38	1.57	1.34			0+	0.12	2,5	0.15	0.17	0.17	0.18	0.19	0.20	0.22	0.23	0.24		ROGEN	0	0.05	0.05	0.06	0.07	20.0	
ELEM		: 2 %	36 41	94	25	6 8	૯ ૪	8 %	106	INTERMEDIATE REPORT AMMONIA NITROGEN MG/L	ELEM	- ;	= 2	2 %	36	۲۲:	4 <u>,</u>	ያ ኣ	8 %	2 %	8	106	1INTERMEDIATE REPORT	NITRATE+NITRITE NITROGEN MG/L	ELEM		. 9	% %	S 14 :	95	
RCH	← ∨	W W	м 4	īV	9 I	~ °	∞ 0	, 6	=	MEDIA IA NI	RCH	← (4 V	א נ	М	4 1	Λ,	1 0	~ α	0	, e	7	MEDIA	TE+NI	RCH	- 0	'n	мк	7	Ŋ	
9	DA	8 8 8 8	A A	DA	ρĄ	δ.	Υ O	6 A	DA	1INTERMEDIATE AMMONIA NITRC MG/L	0	V S	\$ 8	X &	DA	Ρ	Y ?	¥ å	Šá	¥ 6	Δ	Ρ	1INTER	NITRA MG/L	Q	DA	DA .	DA D	Y A	DA	

.{lemands	l emands,	l emands,
0.08 0.08 0.09 0.09 0.10 0.10 0.11 0.11 0.12 0.12 Upper Bayou Des Allemands,	+8 +9 1.7	+6 +7 +8 +9 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.11 0.11 0.11 0.11 0.11
0.08 0.09 0.10 0.11 0.12		+8 0.12 0.12 0.12 0.12 0.12 0.11 0.11
0.08 0.09 0.10 0.11 0.12 simulatio	+7 1.7 1.7 1.7 1.7 1.7 1.7	+7 0.12 0.12 0.12 0.12 0.12 0.12 0.11 simulation
0.08 0.08 0.09 0.09 0.10 0.10 0.11 0.11 0.12 0.12 0.09 projection simulation,	4 +5 +6 +7 .7 1.7 1.7 1.7 .7 1.7 1.7 .7 1.7 1.7 .7 1.7 1.7 .7 1.7 1.7 .7 1.7 1.7 .7 1.7 1.7 .7 1.7 1.7 .7 1.7 1.7 .	+6 0.12 0.12 0.12 0.12 0.12 0.12 0.11 0.12 0.11
0.08 0.09 0.10 0.11 0.12 summer	4 +5 .7 1.7 .7 1	4 +5 12 0.12 12 0.12 12 0.12 12 0.12 12 0.12 12 0.12 11 0.11 11 0.11 11 0.11 11 0.11 11 0.11
0.08 0.09 0.10 0.11 0.12 QUAL-TX Projecti	44 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7	44 0.12 0.12 0.12 0.12 0.12 0.12 0.11 0.11
0.08 0.09 0.11 0.11	E	\$ 100 0.12 0.12 0.12 0.12 0.12 0.12 0.12
0.08 0.09 0.10 0.11 0.12	2	2+ 0.025.00 0.025.00 0.025.00 0.025.00 0.015.00
0.08 0.09 0.11 0.12	+	1, 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12
0.08 0.09 0.11 0.12	0 + 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
DA 6 56 DA 7 66 DA 7 66 DA 8 76 DA 9 86 DA 10 96 DA 11 106 TINTERMEDIATE REPORT	ELEM 11 16 26 36 44 46 56 76 76 76 106 F REPORT	ELEM 11 16 26 26 44 46 46 56 56 76 86 96 106 E REPORT
DA 6 5 DA 7 6 DA 8 7 DA 8 7 DA 9 8 DA 10 9 DA 11 10 INTERMEDIATE R TOTAL NITROGEN	RCH 1 2 3 3 4 4 7 7 10 11 MEDIAT HORUS	RCH 1 2 2 3 3 4 4 7 7 10 11 PHYLL
DA DA DA DA DA TINTER!	ID RCH EID DA 1 1 DA 2 2 DA 3 3 DA 3 3 DA 4 4 DA 5 DA 6 DA 7 DA 7 DA 7 DA 11 DA 11 TINTERMEDIATE PHOSPHORUS DA 11 MG/L	ID RCH EIDA 1 DA 1 DA 2 DA 3 DA 3 DA 3 DA 6 DA 6 DA 7 DA 7 DA 10 DA 11 TRMEDIATE CHLOROPHYLL A 10 DG/L

										emands,													emands,	-		-		•			
6+	40.5	35.4 33.0	21.0	30.1	29.5	28.4	27.9	27.5		QUAL-TX summer projection simulation, Upper Bayou Des Allemands, Projection Run	\$	30.80	30.80	30.80		30 80	30.00	30.80	30.80	30.80	30.80		QUAL-TX summer projection simulation, Upper Bayou Des Allemands, Projection Run		6+	0.3	6	n m		0.3	
48	41.0	35.7 33.2	7	30.2	29.3	28.5	27.9	57.5		n, Upper B	8+	30.80	30.80	30.80		20 90	30.00	30.8	30.80	30.80	30.80		n, Upper Ba		& +	0.3	,	0.0		0.3	
2 +	41.6	36.0 33.4	7 12	30.3	29.4	28.6	28.0	57.6		simulatio	Z +	30.80	30.80	30.80		00 02	30.00	30.80	30.80	30.80	30.80		simulatio		/ +	0.3	_ ,	0.3		0.3	
9+	42.3	36.3 33.7	24.0	30.4	29.5	28.7	28.0	27.6 20.1	;	projection	4	30.80	30.80	30,80		20 00	30.00	30.80	30.80	30.80	30.80	30.80	projection		9	0.3	6	0.3		0.3	
45	43.0	36.6 33.9	2 12	30.5	29.6	28.7	28.1	27.6	?	QUAL-TX summer Projection Run	45	30.80	30.80	30.80		20 02	30.00	30.80	30.80	30.80	30.80	30.80	QUAL-TX summer Projection Run		,	0.3	6	0.3		0.3	
7+	43.8	34.1	31.7	30.6	29.7	28.8	28.1	27.7	? ;	QUAL- Proje	7+	30.80	30.80	30.80	30.80	30.80	30.00	30.80	30.80	30.80	30.80	30.80	QUAL- Proje		7 +	0.3) C	0.3	0.3	0.3	
,	9.44	37.2 34.4	31.7	30.6	29.8	28.9	28.2	27.7	: ;		£	30.80	30.80	30.80	30.80	30.80	20.00	30.80	30.80	30.80	30.80	30.80			£	0.3	0 0	0.0	0.3	0.3	
+5	45.5	37.5	31.8	30.7	29.9	29.0	28.3	27.8) j		+5	30.80	30.80	30.80	30.80	30.80	30.00	30.80	30.80	30.80	30.80	30.80			7	0.3	יי ס כ	0.3	0.3	0.3	
Ŧ	2.97	37.8 34.9 37.6	32.0	30.8	29.9	29.1	28.3	27.8	:		,	30.80	30.00	30.80	30.80	30.80	30.80	30.80	30.80	30.80	30.80	30.80			+	0.3	יי ס כ	0.3	0.3	0.3	
0+	47.3	38.2	32.1	30.9	30.0	29.1	28.4	27.8	: i		0+	30.80	30.80	30.80	30.80	30.80	30.00	30.80	30.80	30.80	30.80	30.80				0.3	א ה	0.3	0.3	0.0	r
ELEM		7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	14.	2 4	99	92	88	8 5			ELEM	- 4	- 2	56	36	1,4	5 v	8,8	92	88	96	106 TE REPORT			ELEM	·	- 4	2 %	36	. 1 4	
RCH	- 0	1 W W W) 4 r	סיר	7	∞	٥ ;	2 5	INTERMEDIATE	TEMPERATURE DEG C	RCH	← (u M	M	M	4 n	n v	^	∞	6	9	77 MFD 1.4	TI		RCH	- c	4 N	'n	κ <	ŧΩ	
01	DA O	4 A A	8 8	5 5	DA	ρĄ	A :	A C	1INTER	TEMPE DEG C	10	A S	¥ 6	ď	DA	δ δ	5 2	S S	DA	DA	DA	DA 11 '	SALINITY		Q	DA	<u> </u>	5 5	D A	Z Z	

_bda.out

, spu				*****	* KCM	0.00	MEAN VELO M/S	0.012 0.012 0.012 0.012
.3 0.3 0.3 0.3 0.3 0.3 0.3		0 00	00000	QUAL-TX summer projection simulation, Upper Bayou Des Allemands, Projection Run REACH INPUTS ************************************	COLI #/100ML	******	DISPRSN SQ M/S	4.500 4.500 4.500 4.500
0.3 0.3 0.3 0.3 0.3 8ayou De	6+	427.0 427.0 427.0	427.0 427.0 427.0 427.0 427.0 427.0	Bayou D	CHL A UG/L	51.0	TIDAL VELO M/S	0.000 0.000 0.000 0.000
0.3 0.3 0.3 0.3	48	427.0 427.0 427.0	427.0 427.0 427.0 427.0 427.0 427.0	, Upper	PHOS MG/L	0.12	TIDAL PRISM CU M	00000
0.3 0.3 0.3 0.3 mulatior	7+	427.0 427.0 427.0	427.0 427.0 427.0 427.0 427.0	mulation ******	NO3+2 MG/L	0.05	X-SECT AREA SQ M	2197.8 2197.8 2197.8 2197.8 2197.8
n si	`	4 44	44444	n si ****	NH3 MG/L	0.12		
0.3 0.3 0.3 0.3 0.3 projectio	+6.	427.0 427.0 427.0	427.0 427.0 427.0 427.0 427.0 427.0	projectio *******	ORGN MG/L	1.58	SURFACE AREA SQ M	180740.3 180740.3 180740.3 180740.3
.3 0.3 .3 0.3 .3 0.3 .3 0.3 .3 0.3 .3 0.3	+5	427.0 427.0 427.0	427.0 427.0 427.0 427.0 427.0 427.0	QUAL-TX summer Projection Run INPUTS *******	EBOD MG/L	3.79	VOLUME CU M	274725. 274725. 274725. 274725. 274725.
L-TX ject				L-TX jecti	BOD MG/L	3.79 TER V		
0.3 0.3 0.3 0.3 Pro	++ 27 C	427.0 427.0 427.0 427.0 427.0	427.0 427.0 427.0 427.0 427.0 427.0 427.0	QUAI Pro	DO MG/L	6.71 3	H WIDTH	1445.9 1445.9 1445.9 1445.9
x x x x x x x x x x x x x x x x x x x	+3	427.0 427.0 427.0 427.0 427.0	427.0 427.0 427.0 427.0 427.0 427.0	***************************************	CM-11	0.0 IYDRAUL IC	EL DEPTH	2 1.52 2 1.52 2 1.52 2 1.52 2 1.52
ыйымым				****	CM- I	427.0 ****** H	TRAVEL TIME DAYS	0.12 0.12 0.12 0.12
000000 00000	+5	427.0 427.0 427.0 427.0 427.0 427.0	427.0 427.0 427.0 427.0 427.0 427.3	**		.*****	ADVCTV VELO M/S	0.012 0.012 0.012 0.012
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	+1	427.0 427.0 427.0 427.0 427.0	427.0 427.0 427.0 427.0 427.0 427.0	nds ands ************************************	SALN	0.00	PCT EFF	0.0000
5.00 5.00 5.00 5.00 5.00				Lake Des Allemands Bayou Des Allemands	TEMP DEG C	1 HDWTR 26.8000 30.80 0.00 427.0 0.0 6.71 3.79 3.79 1.58 0.12 0.05 0.12 51.0 0.00	FLOW	26.8000 26.8000 26.8000 26.8000 26.8000
PORT				FINAL REPORT Lake Des Allem REACH NO. 1 Bayou Des Allem ***********************************	FLOW	26.8000	ENDING DIST KM	32.88 32.75 32.63 32.50 32.38
56 66 76 76 76 106 TE REI	ELEM	11 1 38 14 1 1 38 41 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	25 26 27 28 28 28 29 20 20 20 20 20 20 20 20 20 20 20 20 20	ZT 1		**		
DA 6 56 DA 7 66 DA 7 66 DA 8 76 DA 9 86 DA 10 96 DA 11 106 TINTERMEDIATE REPORT	RCH 7	- 0 W W W 4	2 9 2 8 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	. REPORT	TYPE	HDWTR	BEGIN DIST KM	33.00 32.88 32.75 32.63 32.50
DA DA DA DA DA DA TINTERI Cond	9 5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	FINAL REACH	ELEM NO.	***	ELEM NO.	← 0 W 4 W

bda.out	180740.3 180740.3 180740.3 180740.3	1807403.5
B _	274725. 274725. 274725. 274725. 274725.	2747253.
	1445.9 1445.9 1445.9 1445.9 1445.9	1.52 1445.9
	1.52 1.52 1.52 1.52	1.52
	0.0 0.12 0.12 0.12	1.19
	0.012 0.012 0.012 0.012	0.012
	0.0000	
	26.8000 26.8000 26.8000 26.8000 26.8000	
	32.25 32.13 32.00 31.88	

32.38 32.25 32.13 32.00 31.88

9 / 8 9 0

TOT AVG CUM

0.012 0.012 0.012 0.012 0.012

4.500 4.500 4.500 4.500

0.000 0.000 0.000 0.000

.....

2197.8 2197.8 2197.8 2197.8

2197.8

1.19

***	************************	*****	****	*****	****	***********	BIOLOGICAL	ICAL AI	ND PHYS	ICAL C	AND PHYSICAL COEFFICIENTS ********************************	ENTS *	*****	***	****	*****	*****	****	****
ELEM	ENDING	SAT	REAER	CBOD	CBOD	ANBOD	FULL	CORR	ORGN	ORGN	NH3	EH3	DENIT	Ş	ALG	MAC	COLI	NCM	NCM
9	DIST	0.0	RATE	DECAY	SETT	DECAY	200	SOD	DECAY	SETT	DECAY	SRCE	RATE	SRCE	PROD	PROD	DECAY	DECAY	SETT
		MG/L	1/DA	1/DA	1/DA	1/DA	*	*	1/DA	1/DA	1/DA	*	1/DA	*	*	*	1/DA	1/DA	1/DA
-	32.875	7.44	0.75	0.23	0.00	0.00	3.13	3.13	0.03	0.00	0.20	0.05	0.00	0.01	0.89	0.0	00.00	0.00	00.00
2	32.750	7.44	0.75	0.23	0.00	0.00	3.09	3.09	0.03	0.00	0.20	0.02	0.00	0.01	0.88	0.00	0.00	0.00	0.00
M	32.625	7.44	0.75	0.23	0.00	0.00	3.04	3.04	0.03	0.00	0.20	0.02	0.0	0.01	0.88	0.00	0.00	0.00	0.00
4	32.500	7.44	0.75	0.23	0.00	0.00	3.00	3.00	0.03	0.00	0.20	0.02	0.00	0.01	0.87	0.00	0.00	0.00	0.00
ហ	32.375	7.44	0.75	0.23	0.0	0.0	2.95	2.95	0.03	0.00	0.20	0.02	0.00	0.01	0.87	0.00	0.0	0.00	0.00
9	32.250	7.44	0.75	0.23	0.00	0.00	2.35	2.95	0.03	0.00	0.20	0.05	0.00	0.01	9.8	0.00	0.00	0.0	0.00
7	32.125	7.44	0.73	0.23	0.0	0.00	2.88	2.88	0.03	0.00	0.20	0.02	0.00	0.01	0.86	0.00	0.00	0.00	0.00
∞	32,000	7.44	0.75	0.23	0.0	0.00	2.84	2.84	0.03	0.00	0.20	0.02	0.00	0.01	0.85	0.00	0.00	0.00	0.00
0	31.875	7.44	0.75	0.23	0.0	0.00	2.81	2.81	0.03	0.00	0.20	0.02	0.00	0.01	0.85	0.00	0.00	0.0	00.00
10	31.750	7.44	0.75	0.23	00.00	0.00	2.78	2.78	0.03	0.00	0.20	0.02	0.00	0.01	0.85	0.00	0.00	0.00	0.0
20 DE	20 DEG C RATE			0.14		0.00		0.35	0.02		0.10	0.01	0.00	0.01			0.00	0.00	
AVG 2	O DEG C	RATE	0.61		0.00					0.00									0.00
4 G/SQ M/D	Q/M/D		** MG/L/DAY	'L/DAY															

*	* NC	.0	9	2	0	2	2	2	2	2	8
***	ž"	0.0	0.0	0.0	0.0	0.0	0.0	0,0	0.0	0	0.00
*****	COL I #/100ML	0		0	0	Ö	0	0	0	0	
*****	MACRO **	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
****	CHL A UG/L	47.3	46.3	45.5	9.44	43.8	43.0	45.3	41.6	41.0	40.5
****	PHOS MG/L	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12
******	TOTN MG/L	1.73	7.7	1.72	1.72	1.7	1.71	1.70	1.70	1.70	1.69
**** Si	NO3+2 MG/L	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
IT VALUES	NH3 MG/L	0.12	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13
CONSTITUENT	ORGN MG/L	1.56	1.55	1.55	1.54	1.53	1.53	1.52	1.52	1.51	1.51
QUALITY CON	EBOD MG/L	3.54	3.47	3.41	3.36	3.30	3.25	3.20	3.16	3.12	3.09
WATER QUAL	BOD MG/L	3.54	3.47	3.41	3.36	3.30	3.25	3.20	3.16	3.12	3.09
r*** WA1	DO MG/L	6.27	6.17	80.9	9.00	5.92	5.86	5.80	5.75	2.70	2.66
*****	CM-II	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
****	CM - I	427.0	427.0	427.0	427.0	427.0	427.0	427.0	427.0	427.0	427.0
****	SALN	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
***	TEMP DEG C	30.80	30.80	30.80	30.80	30.80	30.80	30.80	30.80	30.80	30.80
************************	ENDING DIST	32.875	32.750	32.625	32,500	32.375	32,250	32.125	32.000	31.875	31.750
***	ELEM NO.	-	7	~	4	'n	9	^	∞	6	10

14 of 36

NCM =

CM-11 =

* CM-I = cond umhos ** G/CU M

**			0.012 0.012 0.012 0.012		***	NCM SETT 1/DA		0.0	0.00		.0.	0.00	0.00	0.00	0.00		
***			4.500 4.500 4.500 4.500 4.500		****	NCM DECAY 1/DA						0.00			3		
****	M P/R RATIO		0.000 0.000 0.000 0.000		****	COLI DECAY 1/DA		0.00	0.0	9 6	0.0	0.00	9.0	0.00	0.00		
****	MAC RESP 1/DA		00000		***	MAC PROD	2	0.0	9.0	3 8	8 8	0.00	88	0.00			
***	MAC GROW 1/DA				***	ALG PROD	80	0.88	9.8	9.0	8.0	9.8	0.85	0.85			
* * * *	MAC TOT LIM		2197.8 2197.8 2197.8 2197.8 2197.8	2197.8	***	PO4 SRCE *	5	0.01	9.0	0 0	0.0	0.0	0.0	0.01	-		
***	MAC N&P LIM				****	DENIT RATE 1/DA	0	0.00	8 8	00.00	.03	0.0	888	8 8	3		
***	MAC MAC N P LIM LIM	_bda.out	180740.3 180740.3 180740.3 180740.3	1807403.5	ENTS **	NH3 SRCE	0.02	0.02	0.05	0.02	0.02	0.02	0.02	0.02	5		
E DATA *	A P/R MAC RATIO LIT LIM	1.98 1.99 - bda	274725. 274725. 274725. 274725. 274725.	2747253.	BIOLOGICAL AND PHYSICAL COEFFICIENTS ************************************	NH3 DECAY 1/DA	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	2		
ROPHYT	ALG A RESP RA 1/DA	~ ~			ICAL 0	ORGN SETT 1/DA	0.00	0.00	8.0	80.0	0.0	8.0	888	9.	0.00		į
ND MAC			1.52 1445.9 1.52 1445.9 1.52 1445.9 1.52 1445.9	1445.9	ID PHYS	ORGN DECAY 1/DA	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.0	i)		2
LGAE A	ALG GROW 1/DA			1.52	CAL AN	CORR SOD *	3.13	3.09	2 c	2.95	2.92	2.88	2.81	6.70	}		
***	ALG ALG N&P TOT LIM LIM		0.12 0.12 0.12 0.12	1.19	310L0GI	FULL SOD *						2.88					
****	ALG ALG ALG A LIT N P N LIM LIM LIM L		0.012 0.012 0.012 0.012	0.012	*********	ANBOD DECAY 1/DA		0.00		0.0			888	0.0			***
* * * *			0.0		***	CBOD SETT 1/DA	0.00	0.00	8 6	0.0	0.00	9 6	0.0	3	0.00		*****
****	ALG SETT 1/DA		26.8000 26.8000 26.8000 26.8000 26.8000			CBOD DECAY 1/DA	0.23	0.23	3.0	0.23	0.23	0.23	0.23	0.14		L/DAY	**
****	NITR		26.8 26.8 26.8 26.8		****	REAER RATE 1/DA	0.75	6.3	2.5	0.75	0.75	0.0 6.K	۲. د د د		0.61	** MG/L/DAY	*****
****	SECCHI DEPTH M		32.25 32.13 32.00 31.88 31.75		****	SAT F D.O. MG/L	7.44	7.44	7.4	7.44	7.44		77.7				******
**************************************	END ING DIST	2004	32.38 32.25 32.13 32.00 31.88		**************************	ENDING DIST		32,750				32.000		C RATE	AVG 20 DEG C RATE	M/D	**************************************
*****	ELEM NO.	3 20	9 × × × × × × × × × × × × × × × × × × ×	TOT AVG CUM	**	ELEM E							9 6	20 DEG	AVG 20	* G/SQ M/D	*****

COLI NCM #/100ML *

CM-II DO BOD EBOD ORGN NH3 NO3+2 TOTN PHOS CHL A MACRO
* MG/L MG/L MG/L MG/L MG/L UG/L **

0.0 6.27 3.54 3.54 1.56 0.12 0.05 1.73 0.12 47.3 0.0

ORGN NH3 NO3+2 MG/L MG/L MG/L

EBOD MG/L

BOD MG/L

CM-II

C₩ *

ELEM ENDING TEMP SALN NO. DIST DEG C PPT

1 32.875 30.80 0.3 2 32.750 30.80 0.3

2004
0
0
٠.

	BIOLOGICAL AND PHYSICAL COEFFICIENTS ************************************	COLI NCM NCM DECAY DECAY SETT 1/DA 1/DA 1/DA	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00	* G/SQ M/D ** MG/L/DAY	MACRO COLI NCM ** #/100ML *	0.0 0.0		**************************************	M P/R RATIO	0.00
	* * *	G MAC D PROD	4 0.00 4 0.00 4 0.00 0.00 0.00		***************************************	CHL A UG/L	40.0 39.6 39.2 38.8 38.5		*****	MAC RESP 1/DA	0.00
ĸi	****	A ALG	0.00 E	-	*	PHOS CI	55555		****	MAC GROW 1/DA	0.00
1308.3	*********	DENIT PO4 RATE SRCE 1/DA *	0.00 0.00 0.00 0.00 0.01 0.00 0.01	0.00 0.01	***************************************	TOTN P MG/L M	1.69 1.69 1.69 1.68 1.68	NCM	****	C MAC MAC N&P TOT M LIM LIM	00.00.00
594841.6	ENTS **	NH3 SRCE *	0.02 0.02 0.02 0.02	0.01	****	NO3+2 MG/L	0.05	Z	****	MAC MAC N P LIM LIM	00.00.00.00.00.00.
904159.	:OEFFICI	NH3 DECAY 1/DA	0.20 0.19 0.19 0.19	0.10	TN:	NH3 MG/L	0.13 0.14 0.14 0.14		E DATA '	A P/R MAC RATIO LIT LIM	2.07 .00 2.08 .00 2.09 .00 2.10 .00
	SICAL C	ORGN SETT 1/DA	0.00	00.00		ORGN MG/L	1.51 1.50 1.50 1.49		ROPHYT	ALG A RESP RAT	0.16 2 0.16 2 0.16 2 0.16 2
1.52 1189.7	ND PHY	ORGN DECAY 1/DA	0.03 0.03 0.03 0.03	0.02) }	EBOD MG/L	3.07 3.05 3.03 3.00		AND MAC		
	ICAL A	CORR SOD	2.84 2.84 2.82 2.80 2.78	07.0		BOD MG/L	3.07 3.05 3.03 2.97		ALGAE /	G ALG T GROW M 1/DA	6 0.42 6 0.43 6 0.43 6 0.43
0.39	BIOLOG	FULL SOD *	2.86 2.84 2.82 2.80 2.80 2.78		* UAT	DO MG/L	5.63 5.57 5.55 5.55	п Н	****	ALG ALG N&P TOT LIM LIM	51 . 15. 51 . 15. 51 . 15.
0.015	* * * *	ANBOD DECAY 1/DA	0.00	0.00	***	CM-II	0.000	CM-11	****	ALG P	.38 .75 .38 .75 .39 .75
_	**********	CBOD SETT 1/DA	0.00	0.00	*************	Š			*****	ALG LIT LIM	32 32 32 32 32
		CBOD DECAY 1/DA	0.8 0.8 0.8 0.8 0.8	0.14	'L/DAY		427.0 427.0 427.0 427.0 427.0		****	ALG SETT 1/DA	0.42 0.42 0.42 0.42
	*****	REAER RATE 1/DA	6.0 6.3 6.0 7.0 6.0 7.0	0.61	** MG/L/DAY	SALN	0003		***	NITR	0.28 0.28 0.28
	****	SAT D.O. MG/L	7.44 7.44 7.44 7.44 7.44	RATE	***	TEMP DEG C	30.80 30.80 30.80 30.80	w	****	SECCHI DEPTH M	0.63 0.64 0.64 0.64
	*************************************	ENDING DIST	31.650 31.550 31.450 31.350 31.250	G C RATE O DEG C RATE	2 M/D	ENDING DIST	31.650 31.550 31.450 31.350 31.250	cond = lampos	****	ENDING DIST	31.650 31.550 31.450 31.350
TOT AVG CUM	***	ELEM NO.	12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	20 DEG AVG 20	* G/SQ	ELEM NO.	<u> </u>	* CM-I *	****	ELEM NO.	132 4

й
φ
7

2004

₹ ₹ 0.0000 ₹ ¥ NCM SETT 1/DA 0.0000 0.00 QUAL-TX summer projection simulation, Upper Bayou Des Allemands, Projection Run COL I #/100ML COL I #/100ML 0.0000 NCM DECAY 1/DA 0.00 00000 COLI DECAY 1/DA 0.00 CHL A UG/L 0.0000 0.00 MAC ** 0.0000 PHOS MG/L CHL A UG/L 40.0 39.6 39.2 38.8 38.5 ALG PROD ** 0.00 NO3+2 MG/L 0.12 0.12 0.12 0.13 PHOS MG/L 0.00 PO4 * 0.01 NH3 MG/L TOTN MG/L 6.6.6.8.8 DENIT RATE 1/DA 00000 0.00 594841.6 Š ORGN MG/L NO3+2 MG/L 0.05 0.05 0.05 0.05 NH3 SRCE * 0.02 0.02 0.02 0.02 0.01 R VALI-bda.out EBOD MG/L 0.10 0.20 0.19 0.19 0.19 904159. NH3 DECAY 1/DA NH3 MG/L 0.13 800 MG/L ************ REACH INPUTS 0.0000 ORGN SETT 1/DA 0.0 1.50 ORGN MG/L 0.10 1.52 1189.7 ORGN DECAY 1/DA 0.03 0.03 0.03 0.03 00 ₩6/L 0.02 EBOD MG/L 3.07 3.05 3.03 3.00 2.97 1.62 CM-11 SOD * 2.86 2.87 2.82 2.80 2.78 0.40 BOD MG/L 3.07 3.05 3.03 2.97 2.86 2.82 2.80 2.80 2.78 FULL SOD 5.63 5.60 5.57 5.55 5.55 D0 MG/L 동* CM-11 00000 ************************** 0.00 ANBOD DECAY 1/DA 0.015 0.000 CM-11 SALN CBOD SETT 1/DA 0.0000 0.0 NOTE ON NITR PREF: 1.0=NO3; 0.0=NH3 0.50 Lake Des Allemands Bayou Des Allemands 427.0 427.0 427.0 427.0 427.0 . ₹ CBOD DECAY 1/DA 0.23 0.23 0.23 0.23 0.14 ** MG/L/DAY TEMP DEG C REAER RATE 1/DA 0.33 0.33 0.33 0.33 0.33 0.61 SALN 00.00 FLOW TEMP DEG C 30.80 30.80 30.80 30.80 SAT D.O. MG/L 20 DEG C RATE AVG 20 DEG C RATE www.even.m 20 DEG C RATE ENDING DIST 31.650 31.550 31.450 31.350 31.250 FINAL REPORT REACH NO. 3 31.650 31.550 31.450 31.350 31.250 * CM-I = cond ENDING DIST TYPE ₹/0 7002*****) ELEM NO. TOT AVG CUM ELEM NO. ELEM NO. 12245 12445

16 of 36

17 of 36

_bda.out

	*	NCM SETT 1/DA				nds,	* * *	* KG	0.00	**	MEAN	M/S	0.017	0.017	0.017	0.017	0.017	0.017	0.017	0.017	0.017	0.017
	BIOLOGICAL AND PHYSICAL COEFFICIENTS ************************************	NCM DECAY S 1/DA 1				QUAL-TX summer projection simulation, Upper Bayou Des Allemands, Projection Run	REACH INPUTS ************************************	COL I #/100ML	0.	**************************************	DISPRSN	SQ M/S	4.500	4.500	4.500			4.500	4.500	4.500		4.500
	*****	COLI DECAY I				ayou Des	****	CHL A UG/L	38.5	****	TIDAL D	1	0.000	0.000 0.000	0.000	0.000	0.000	0.000	0.000	0.000	000	0.000
	****	MAC PROD **		0.00		Jpper B	****	PHOS CI	0.12	***	TIDAL T											
	*****	ALG PROD **		0.0		ation, U	******	NO3+2 F MG/L P	0.05	****												
1538.5	****	SRCE *				simula	***	NH3 NC	0.14 0	***	X-SECT AREA	S	1538.5 1538.5	1538.5 1538.5	1538.5	1538.5	1538.5	1538.5	1538.5	1538.5	1538.5	1538.5
	*****	DENIT RATE 1/DA				jection	*****	ORGN MG/L M	1.49 0	****	SUR FACE AREA	SQ M	83612.0 83612.0	3612.0 3612.0	3612.0 3612.0	612.0	83612.0	612.0	612.0	612.0	612.0	612.0
	CIENTS	3 NH3 Y SRCE A *	0. bda.out			ner pro Run	***	EBOD OI	2.97	**** S		_										
	COEFFI	NH3 T DECAY	000			QUAL-TX summer Projection Run	.**** S	BOD EF	2.97 2.	R VALUE	VOLUME	3	153846.	153846. 153846.	153846. 153846.	153846.	153846.	153846	153846.	153846.	153846.	153846
836.1	IYSICAL	ORGN ORGN AY SETT		0.10		QUAL. Proje	TUPUI H	DO E	5.52 2.	ARAMETE	WIDTH	Σ	836.1	836.1 836.1	836.1 836.1	836.1	836.1	836.1	836.1	836.1	836.1	336.1
1.84 8	AND P	R ORGN DECAY		1.62					0.0 5.	AULIC P	DEPTH	¥					2 2					
3.24	LOGICAL	FULL CORR SOD SOD * *					*****************	CM-11	0	** HYDR	TRAVEL	DAYS	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07
		ANBOD FU DECAY SI 1/DA					*****	CM-I	427.0	****	ADVCTV TR		717	14	17 17	17	17	7,				
0.017	*******	CBOD ANI SETT DE(1/DA 1,			8		****	SALN	0.29	****							0.0 0.017			0.017		0 0.017
	****	CBOD CB DECAY SE 1/DA 1/		0.50	0.0=NH3	Allemands Allemands	***			****	NA PCT EFF											
	****	REAER C RATE DE: 1/DA 1			1.0=NO3;		****	TEMP DEG C	30.80	*****	FLOW	CMS	26.8000	26.800	26.800 26.800	26.800 26.800	26.8000	26.800	26.8000	26.8000 26.8000	26.800	26.8000
	****					Lake Des A Bayou Des	****	FLOW	26.8000	****	ENDING DIST	₹	31.15	3.85		0.55 0.45	30.35	£. £.	.83		.65	.45 ze
	***************************************	NG SAT ST D.O.		RATE	NOTE ON NITR PREF:		*************************************	ш	RCH	*****	BEGIN EN											
o s	****	A ENDING DIST	3004	DEG C	in N N	AL REPORT	***	M TYPE	N _R	*****		_					4 30.45 5 30.35					
AVG	*	ELEM NO.	8 17 L	20	NOT	I FINAL REACH	*	ELEM NO.	16	*	ELEM NO.		16 71	- -	Ñ λι	W 191	≈ ≈	7 7	1 20	Χiκ	in in	33

2004

νοσμοναμοράτονταμοποινί

4.00 51.

84-1-1-4-1-4-1-1-4-1-1-4-1-1-4-1-1-4-1-1-4-1-1-4-1-1-4-1-1-4-1-1-4-1-1-4-1-4-1-1-4-1-1-4-1-1-4-1-1-4-1-1-4-1-1-4-1-1-4-1-1-4-1-1-4-1-1-4-1-4-1-1-4-1-1-4-1-1-4-1-1-4-1-1-4-1-1-4-1-1-4-1-1-4-1-1-4-1-1-4-1-4-1-4-1-1-4-1-4-1-1-4-1-4-1-1-4-1-4-1-1-4-1-1-4-1-1-4-1-1-4

5.43 5.43

427.0 427.0 427.0 427.0 427.0 427.0 427.0 427.0 427.0 427.0 427.0 427.0

00.33 00.03 00

19 20 22 22 23 22 23 23 23 33 33 33 34 40

M P/R RATIO

MAC TOT

A P/R RATIO

ALG RESP 1/DA

ALG TOT LIM

ALG P LIM

ALG N LIM

ALG LIT LIM

ELEM NO.

MACROPHYTE DATA

AND

ALGAE

11 3

Ξ

훙

Σ

g/cn

II

0.00

0.00

0.00

8888888888888

88888888888888

888888888888888

8888888888888888

1.87 1.87 1.85 1.86 1.90 1.92 1.92 1.93 1.95

0.00 0.00

0.37 0.37 0.38 0.38 0.38 0.39 0.39 0.40 0.40

444444666666666

KKKKKKKKKKKKKK

339

0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35

0.27 0.27 0.28 0.28 0.28 0.28 0.28 0.28 0.28

out

~- <u>g</u>

36

₹

0.017

AVG CUM

2004

0.00

1.62

0.0=NH3

1.0=NO3

PREF:

8

Des Allemands ٠.

0.50

C RATE NITR

88888888

88888888 88888888

88888888 88888888

1.97 1.98 1.99 2.00 2.01 2.02 2.03 2.03

0.40 0.41 0.41 0.41 0.41 0.42 0.42

25255555

4255555555 KKKKKKKKKK

2222444444 888888888

0.35 0.35 0.35 0.35 0.35 0.35

0.28 0.29 0.29 0.29 0.29

0.66 0.67 0.67 0.67 0.67 0.67 0.67

29.550 29.450 29.350 29.250 29.150 29.150 28.950 28.850

FINAL	REPORT NO. 4	Lake Des All Bayou Des Al	es Allemands Des Allemands	ak nds				9. Y	QUAL-TX summer Projection Run	summer p on Run	orojecti	on sim	ulation	, Upper	. Bayou [QUAL-TX summer projection simulation, Upper Bayou Des Allemands, Projection Run	'spu
****	****	************	*****	****	****	****	**** RE	ACH IN	PUTS **	****	***	***	****	****	***	**************************************	***
ELEM NO.	TYPE	FLOW	J TEMP	SALN		CM-1 C	CM-11	MG/L	BOD MG/L	EBOD MG/L	ORGN MG/L	NH3 MG/L	NO3+2 MG/L	PHOS MG/L	CHL A UG/L	COL I #/100ML	NC ₩
1,1	UPR RCH	26.8000	30.80	0.28	28 427.0	0:	0.0	5.27	2.21	2.21	1.42	0.17	0.07	0.12	32.2		00.00
*	***	****	**************************************	****	******	**** HYD	RAUL IC	PARAM	ETER VA	"ILUES **	****	**	****	***	****	****	*
ELEM NO.	BEGIN	ENDING DIST	FLOW	PCT	ADVCTV VELO	TRAVEL TIME	DEPTH	H WIDTH		VOLUME	SURFACE	X-SECT	ECT.	TIDAL	TIDAL	DISPRSN	MEAN
	Σ	Σ	CMS		S/W	DAYS	Σ	Σ		æ CO	SOM		¥	₹	W/S	SQ M/S	S/W
41	28.75	28.65	26.8000	0.0	0.026	0.04	2.16			523. 523.	47001.3		2.5	0 0	0.000	4.500	0.026
43	28.55 28.45	28.45 28.35	26.8000 26.8000	0.0	0.026	0.04	2.16	470.0 470.0	•	101523. 101523.	47001.3 47001.3	5 1015.2 5 1015.2	2.2		0.000	4.500	0.026
, V. (AVG 2004 CLIM	900;								5	د _bda.out	out					1	

AVG :

33.2 36.9 36.9 36.9 36.9 37.7 37.7 37.7 37.9 37.9 37.9 37.9 1.48 1.47 1.47 1.47 1.45 1.45 1.45 1.45 1.45 1.45 427.0 427.0 427.0 427.0 427.0 427.0 427.0 427.0 427.0 www.www.www.www.ww 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 .850 .750 .750 .750 .750 .750 .750 .850 .850 .850 .850

0.00

36

of 6

36
φ
8

0.00 0.00 0.00	0.00		**	* *	0.00		**											
0.000	0.00		***********	COL I #/100ML	00000		MAPDOUTE DATA **********************************											
8888	0.00			MACRO **	0.0000		******	M P/R RATIO		0.0000	ì					0.00	0000	0.00
0.00			**************	CHL A M	32.1 32.0 31.8 31.7		****	MAC	1/DA	00000	0.00					0.00	0.00	0.00
0.49 0.49 0.49			****				* * * * * * * * * * * * * * * * * * * *	MAC	1/DA	000000	0.00					9.0	0.00	888
0.01 0.01 0.01	0.00			PHOS MG/L	0.12 0.12 0.12 0.12		* * *	MAC		88888	٠						888	
8888	0.00		****	TOTN MG/L	88888	li	**	MAC MA		88888							888	
			****		70.66	NCA	**	MAC P	LIX	88888							888	
0.06 0.06 0.06 0.06	0.03		ES **	NO3+2 MG/L	0.07 0.07 0.07 0.07 0.07		**	MAC		88888				bda.out			888	
0.19 0.19 0.19 0.19	0.10		r VALL	NH3 MG/L	0.17 0.17 0.17 0.17		DATA	R MAC		77 88 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9				ğ			999	
0.000	0.00		************** WATER QUALITY CONSTITUENT VALUES ********	ORGN MG/L	24: 14: 14: 14:		7	A P/R RATIO		7.1 7.1 87.1 87.1					1	1.9	2.00	222
	.02		CONST				2007	ALG RESP	1/DA	0.16 0.16 0.16 0.16	0.10					0.16	0.16 0.16 0.16	0.16 0.15 0.15
0.03 0.03 0.03	0.0		.ITY (EBOD MG/L	2.20 2.18 2.17 2.16 2.16				Ψ	0.36 0.36 0.37 0.37 0.37	.62		٠				0.41 0.41 0.41	
2.44 2.44 2.43 2.43	0.40		QUAL	BOD MG/L	2.20 2.18 2.17 2.16 2.15		ALGAE AND	, * 55			<u>-</u>							
2.44 2.44 2.43 2.43			WATER			н				5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5							7. 27.	
0.000	00.0		**	DO MG/L	5.27 5.26 5.26 5.25 5.25	CM-II	* * *	ALG ALG P N&P		82. K. 82. K. 83. K. 83. K.							55. 55. 55. 55. 55. 55.	
			***	CM-11	0.000	O	* * *	ALG A		44 45 45 45							54.43	
0.00	0.00		***				* * * *	ALG LIT	Ξ	<i>ង់ង់ង់ង់ង់</i>		=NH3					8,8,8,	
0.23 0.23 0.23	0.14	L/DAY		CM- I	427.0 427.0 427.0 427.0 427.0		* * * * * * * * * * * * * * * * * * * *	ALG SETT	1/DA	0.30 0.30 0.30 0.30	0.50	: 0°0=1				0.35	0.35	0.35
0.53 0.53 0.53 0.53	0.43	** MG/L/DA	******************************	SALN	0.3		**************************************	NITR		0.29 0.29 0.29 0.29		1.0=NO3 ;				0.28	0.29	0.29
7.44 7.44 7.44 7.44	ATE		****	TEMP DEG C	30.80 30.80 30.80 30.80 30.80		****	SECCHI DEPTH	Œ	0.67 0.67 0.67 0.67						0.66 0.67	0.67 0.67 0.67	0.67 0.67 0.67
28.550 28.450 28.350 28.250	C RATE Deg C Rate	M/D	****	END ING DIST	28.650 28.550 28.450 28.350 28.250		W ***	END ING DIST		28.550 28.550 28.450 28.350 28.250	C RATE	NITR PREF:				.550	29.350 29.250 29.150	950 850 750
	20 DEG C AVG 20 D	G/SQ M	***			CM-I =	e/cn 1	<u> </u>				8		2004				
44 44 45 45	20 AVG	* G	*	ELEM NO.	41 42 43 44 45	์ *	* *	ELEM NO.		44 44 45 45	20 DEG	NOTE		\	.	33	3833	38 38 36 7

*	0.00	MEAN VELO M/S	0.048 0.048 0.048 0.048 0.048 0.048 0.048		***** NCM SETT 1/DA	000000000000000000000000000000000000000		0.00	0.00
#/100ML	Ö	PCT ADVCTV TRAVEL DEPTH WIDTH VOLUME SURFACE X-SECT TIDAL TIDAL DISPRSN MEAN SELO TIME AREA AREA PRISM VELO VELO VELO WEN WEN SQ M SQ M SQ M M/S SQ M/S M/S M/S	4.500 4.500 4.500 4.500 4.500 4.500 4.500 4.500		BIOLOGICAL AND PHYSICAL COEFFICIENTS ************************************	0.0000000000000000000000000000000000000		00.00	00.00
UG/L	31.7	TIDAL VELO M/S	0.000		COLI DECAY 1/DA	0.00		0.00	0.00
MG/L	0.12	TIDAL T PRISM CU M	0000000000		MAC PROD	0.00		0.00	
MG/L	0.07	* FEO			ALG PROD	0.49 0.50 0.50 0.51 0.51 0.51 0.51		0.49 0.49 0.49 0.49	
	17 0	X-SECT AREA SQ M	561.8 561.8 561.8 561.8 561.8 561.8 561.8	561.8	PO4 SRCE	0.0000000000000000000000000000000000000	•	0.00	0.00
1/9W 1	1 0.17	SURFACE) AREA SQ M	26009.2 26009.2 26009.2 26009.2 26009.2 26009.2 26009.2 26009.2 26009.2	7.5	DENIT RATE 1/DA	00.000000000000000000000000000000000000		0.00	0.00
MG/L	1.41	SUR!	26009.2 26009.2 26009.2 26009.2 26009.2 26009.2 26009.2 26009.2 26009.2	260091.5	NTS ** NH3 SRCE	0.10 0.10 0.10 0.10 0.10 0.10	bda.out	0.06 0.06 0.06	0.03
MG/L	2.15	VALUES : VOLUME CU M	56180. 56180. 56180. 56180. 56180. 56180. 56180.	61798.	DEFFICIE NH3 DECAY 1/DA	0.19 0.19 0.19 0.19 0.19 0.19 0.19	g L	0.19 0.19 0.19	0.10
MG/L	2.15	ARAMETER V VIDTH V		1 56	CAL CO ORGN SETT 1	0.00		0.00	0.00
MG/L	5.25	CH WILL	260.1 260.1 260.1 260.1 260.1 260.1 260.1 260.1	260.1	ID PHYSI ORGN DECAY 1/DA	0.03 0.03 0.03 0.03 0.03 0.03		0.03 0.03 0.03	0.02
*	0.0	DRAULIC F DEPTH	55.5.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	2.16	CAL AND CORR SOD D *	2.42 2.42 2.42 2.41 2.41 2.40 2.39		2.44 2.44 2.43 2.43	0.40
*	0	TRAVEL TIME DAYS	0.02 0.02 0.02 0.02 0.02 0.02	3.70	FULL (SOD *	2.5.42 2.441 2.5.41 2.5.40 3.39 2.39 2.39		2.44 2.44 2.43 2.43	
•	427.0	ADVCTV VELO M/S	0.048 0.048 0.048 0.048 0.048 0.048			00.000000000000000000000000000000000000		0.00	0.00
PPT	0.28	PCT /	000000000	0.048	CBOD SETT 1/DA	0.00		0.00	00.00
၁	30.80	FLOW	8000 8000 8000 8000 8000 8000 8000	•	CBOD DECAY 1/DA	0.23 0.23 0.23 0.23 0.23 0.23		0.23 0.23 0.23	0.14
CMS DEG	00 30	* <u>11</u> . * * * *	26.8000 26.8000 26.8000 26.8000 26.8000 26.8000 26.8000 26.8000 26.8000 26.8000		REAER RATE (0.53 0.53 0.53 0.53 0.53 0.53		0.53 0.53 0.53 0.53	0.43
ប៊	26.8000	ENDING DIST KM	28.15 28.05 27.95 27.75 27.75 27.55 27.55 27.55 27.25	**************************************	SAT R D.O. MG/L	77.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.		77 · 77 · 77 · 77 · 77 · 77 · 77 · 77	RATE
	46 UPR RCH 26.8000 30.80	BEGIN DIST KM	28.25 28.15 28.05 27.75 27.75 27.65 27.55 27.45	TOT AVG CUM	ENDING S DIST D	28.150 7 28.050 7 27.950 7 27.950 7 27.550 7 27.550 7 27.550 7 27.550 7 27.550 7 27.350 7 27.250 7	70	28.550 28.450 28.350 28.250	C RATE DEG C
0	95	ELEM NO.	46 477 48 49 50 51 53 54	TOT AVG CUM	ELEM E NO.	46 47 48 48 49 50 50 50 50 50 50 50 50 50 50 50 50 50	, 2004 , g/s'	44 44 45 45	20 DEG AVG 20

21 of 36

**************************************	CHL A MACRO COLI NCM UG/L ** #/100ML *	31.6 0.0 0.00 31.5 0.0 0.00 31.5 0.0 0.00 31.4 0.0 0.00 31.3 0.0 0.00 31.2 0.0 0.00 31.1 0.0 0.00 31.1 0.0 0.00 31.1 0.0 0.00		ALG ALG ALG ALG ALG A P/R MAC MAC MAC MAC MAC MAC MAC MAC M P/R LIT N P N&P TOT GROW RESP RATIO LIT N P N&P TOT GROW RESP RATIO LIM LIM LIM LIM 1/DA 1/DA 1/DA 1/DA 1/DA 1/DA 1/DA	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	00*0	QUAL-TX summer projection simulation, Upper Bayou Des Allemands, Projection Run		MG/L UG/L #/100ML * 0.12 31.7 0. 0.00
*****	PHOS MG/L	0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.		MAC MAC TOT GROW LIM 1/DA	00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.	00.00	imulation,		'L MG/L
******	NO3+2 TOTN MG/L MG/L	0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.08 0.08	□ NCW	MAC MAC MAC N P N&P LIM LIM LIM			rojection s	out	MG/L MG/L
IVENT VALUES	NH3 MG/L	2.00.00.00.00.00.00.00.00.00.00.00.00.00		TILE DAIA "" A P/R MAC M RATIO LIT LIM L	1.80 .00 .1.82 .00 .1.82 .00 .1.82 .00 .1.82 .00 .1.83 .00 .1.84 .00 .1.84 .00 .1.85 .		TX summer p ction Run	bda.out	MG/L MG/L 2.15 2.15
ITY CONSTIT	EBOD ORGN MG/L MG/L	2.14 2.13 2.13 1.41 2.10 1.41 2.08 1.40 2.07 1.40 2.05 1.40 2.05 1.40 2.05 1.40		AND MACKOPH LG ALG OW RESP DA 1/DA	37 0.16 37 0.16 37 0.16 37 0.16 37 0.16 38 0.16 38 0.16 38 0.16	52 0.10	QUAL-:		MG/L MG
WATER QUAL	0 800 /L MG/L	25 2.14 2.13 2.05 2.05 2.05 2.05 2.05 2.05 2.05 2.05	11	G ALG ALG P TOT GROW	6. 14 0.37 6. 14 0.37 7. 14 0.37 7. 14 0.37 7. 14 0.38 7. 14 0.38 7. 14 0.38 7. 14 0.38 7. 14 0.38	1.62			* 0.0
****	CM-II DO * MG/L	0.0 5.25 0.0 5.24 0.0 5.24 0.0 5.24 0.0 5.23 0.0 5.23 0.0 5.23	CM-II	S ALG ALG ALG I N P N&P M LIM LIM LIM	.45 .75 .56 .56 .75 .56 .75 .75 .56 .75 .75 .75 .75 .75 .75 .75 .75 .75 .75				PPT *
	CM + I	427.0 427.0 427.0 427.0 427.0 427.0 427.0 427.0		ALG ALG SETT LIT 1/DA LIM	0.30 .25 .030 .25 .25 .030 .25 .25 .030 .25 .25 .030 .25 .25 .25 .030 .25 .25 .25 .25 .25 .25 .25 .25 .25 .25	0.50 0.0=NH3	lemands Lemands		DEG C
******************************	TEMP SALN DEG C PPT	30.80 0.3 30.80 0.3 30.80 0.3 30.80 0.3 30.80 0.3 30.80 0.3 30.80 0.3 30.80 0.3	* CM-I = cond umhos ** G/CU M	SECCHI NITR DEPTH PREF M	0.67 0.29 0.68 0.29 0.68 0.29 0.68 0.29 0.68 0.29 0.68 0.29 0.68 0.29 0.68 0.29	F: 1.0=NO3	9 6		CMS C
*****	ENDING DIST DE	28.150 36 28.050 36 27.950 36 27.750 36 27.550 36 27.550 36 27.550 36 27.550 36 27.550 36 27.550 36 27.550 36 27.550 36	I = cond umhos CU M	ENDING SE DIST D	28.150 0 28.050 0 27.950 0 27.850 0 27.750 0 27.550 0 27.450 0 27.350 0 27.250 0	20 DEG C RATE	REPORT NO. 6	2004	UPR RCH
*	ELEM NO.	46 47 48 48 53 53 53 53	* CM-1 :	ELEM NO.	44 444 52 53 53 54 54 54	20 DEG	1 FINAL REACH	ELEM 2	NO.

24 of 36

_bda.out

2004

00.00	***	MEAN VELO M/S	0.039 0.039 0.039 0.039 0.039 0.039 0.039		****	NCM SETT 1/DA	0.0000000000000000000000000000000000000	0.00		
0.	**************************************	DISPRSN SQ M/S	4.500 4.500 4.500 4.500 4.500 4.500 4.500 4.500		BIOLOGICAL AND PHYSICAL COEFFICIENTS ************************************	NCM DECAY S 1/DA 1	000000000000000000000000000000000000000	0.00		
31.0	*****	TIDAL VELO	0.000 0.000 0.000 0.000 0.000 0.000		*******	COLI DECAY 1/DA	000000000000000000000000000000000000000	0.00		
0.12	****	TIDAL PRISM CU M	0000000000		****	MAC PROD **	0.00			
0.08	****				****	ALG PROD **	0.33 0.34 0.34 0.34 0.35 0.35			
0.18 0	****	X-SECT AREA SQ M	680.3 680.3 680.3 680.3 680.3 680.3 680.3	680.3	****	PO4 *	0.0000000000000000000000000000000000000	0.00		
	****	SURFACE AREA SQ M	25964.6 25964.6 25964.6 25964.6 25964.6 25964.6 25964.6 25964.6 25964.6 25964.6	45.8	***	DENIT RATE 1/DA	0.0000000000000000000000000000000000000	0.00		
1.40	****	SUR A S	\$2555555555555555555555555555555555555	259645.8	NTS *	NH3 SRCE *	0.00 11.00 11.00 11.00 11.00 11.00	0.05		. out
2.03	/ALUES	VOLUME CU M	68027. 68027. 68027. 68027. 68027. 68027. 68027.	680272.	EFFICI	NH3 DECAY 1/DA	0.19 0.19 0.19 0.19 0.19 0.19	0.10		.NT V. bda.out
2.03	METER V	WIDTH V			CAL CO	ORGN SETT 1/DA	0.00	00.00		
5.23	PARA!		259.6 259.6 259.6 259.6 259.6 259.6 259.6 259.6 259.6 259.6	259.6	PHYSI	ORGN DECAY 1/DA	0.03 0.03 0.03 0.03 0.03 0.03	0.02		
0.0	ORAUL I	DEРТН М	2.62 2.62 2.62 2.62 2.62 2.62 2.62 2.62	2.62	AL AND	CORR SOO D	2.39 2.38 2.38 2.37 2.36 2.36 2.36 2.35 2.35	0,40		
0.	*** HY!	TRAVEL TIME DAYS	0.03 0.03 0.03 0.03 0.03 0.03	3.99	100010	FULL C SOD *	2.39 2 2 38 2 38 2 28 2 38 2 28 2 28 2 28 2 28 2 28 2 28 2 28 2 28 2 28 2 28 2 28 2 28 2 28 28	0		
427.0	******	ADVCTV VELO M/S	0.039 0.039 0.039 0.039 0.039 0.039 0.039	0.039		ANBOD DECAY 1/DA	00.000000000000000000000000000000000000	0.00		
0.28	*****	PCT /	0.0000000000000000000000000000000000000		***	CBOD SETT 1/DA	0.00	00.00		
.80	***	FLOW			****	CBOD DECAY 1/DA	0.23 0.23 0.23 0.23 0.23 0.23	0.14	3 4 6	
30	****	ш.	26.8000 26.8000 26.8000 26.8000 26.8000 26.8000 26.8000 26.8000 26.8000 26.8000		****	REAER RATE 1/DA	0.43 0.43 0.43 0.43 0.43 0.43 0.43	0.35	· · · · · · · · · · · · · · · · · · ·	•
26.8000	***	ENDING DIST KM	27.15 27.05 26.95 26.85 26.75 26.55 26.55 26.55 26.55 26.35 26.35		***************************************	SAT RI D.O. I MG/L	7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.		*	
UPR RCH	****	BEGIN DIST KM	27.25 27.15 27.05 26.95 26.85 26.75 26.65 26.55 26.45		****	ENDING S DIST D	27.150 7 7 7 051 7 7 7 052 7 052 7 053 7 7 053 7 7 053	C RATE DEG C RATE	Ę	70
26	***	ELEM NO.	37	TOT AVG CUM	***	ELEM E	55 57 58 59 59 50 50 50 50 50 50 50 50 50 50 50 50 50	20 DEG AVG 20	* c/co	2004

ORGN NH3 NO3+2 MG/L MG/L MG/L

EBOD MG/L DO 80D MG/L MG/L CM-II

¥ **K**

COL1 #/100ML

PHOS CHL A MACRO MG/L UG/L **

TOTN MG/L

CM-1

ELEM ENDING TEMP SALN NO. DIST DEG C PPT

0.00

24 of 36

_bda.out

* NCM	000000000000000000000000000000000000000	**				'spu	NCM	
COLI #/100ML	0000000000	***************************************				projection simulation, Upper Bayou Des Allemands,	COL I	
MACRO **	0000000000	***************************************	M P/R	000000000000000000000000000000000000000	1	Bayou De	CHL A	
CHL A UG/L	30.9 30.8 30.7 30.6 30.6 30.5 30.5 30.2	**	C MAC W RESP A 1/DA	000000000000000000000000000000000000000	00.00	, Upper	PHOS	
PHOS MG/L	55555555555	**	MAC GROW 1/DA	000000000000000000000000000000000000000	0.00	lation	NO3+2	
TOTN MG/L	3333333335	# # # # # # #	MAC MAC N&P TOT LIM LIM	9.00.00.00.00.00.00.00.00.00.00.00.00.00		ion sim	NH3	
NO3+2 MG/L	0.0088	NCM	A P/R MAC MAC MAC RATIO LIT N P LIM LIM LIM LIM	000000000000000000000000000000000000000		project	ORGN	out
NH3 MG/L	0.19 0.19 0.19 0.19 0.19 0.20	DATA *	/R MAC IO LIT LIM	1.54		summer on Run	EBOD	bda.out
ORGN MG/L	1.40 1.39 1.39 1.39 1.39 1.39 1.39	ROPHYTE	ALG A P RESP RAT 1/DA		0.10	QUAL-TX summer Projection Run	800 BOD	
EBOD MG/L	2.02 2.01 2.00 1.98 1.97 1.94 1.92	AND MAC	ALG A GROW RE 1/DA 1/	0.32 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.033 0	1.62 0.	G C .	DO DO	
BOD MG/L	2.02 2.01 1.98 1.97 1.94 1.92 1.93	ALGAE	ALG A TOT GR LIM 1/		- -	÷	CM-11	
DO MG/L	5.22 5.22 5.22 5.23 5.24 5.25 5.25 5.25 5.25 5.25	CM-II ==	ALG ALG A P N&P T LIM LIM L	5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5		•	CM-1	
CM-11	0000000000	Ö **	ALG N LIM	74. 74. 74. 74. 74. 74. 84. 84. 84. 84. 84.		**************************************	SALN	
CM-1	427.0 427.0 427.0 427.0 427.0 427.0 427.0 427.0	* CM-I = cond	ALG ALG SETT LIT 1/DA LIM	2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	0.50 ; 0.0=NH3	emands Lemands	FIFM TYPE FLOW TEMP SALN CM-I CM-II DO BOD EBOD ORGN NH3 NO3+2 PHOS CHLA COLI NCM	
SALN		**	NITR	0.29 0.29 0.29 0.29 0.30 0.30 0.30	1.0=NO3	Lake Des Allemands Bayou Des Allemands	FLOW TE	•
TEMP DEG C	30.80 30.80 30.80 30.80 30.80 30.80 30.80 30.80	**	SECCHI DEPTH M	0.068 888 888 90.068 888 889 890 889 889 889 889		Lake	.⊒E	
ENDING DIST	27.150 26.950 26.850 26.850 26.750 26.550 26.550 26.550 26.550 26.550	= cond umhos U M	ENDING DIST	27.150 26.950 26.850 26.850 26.750 26.550 26.550 26.550 26.550 26.550	20 DEG C RATE NOTE ON NITR PREF:	REPORT NO. 7	ТҮРЕ	2004
ELEM NO.	55 57 57 60 60 63 64 64 65	** CM-I = **	ELEM NO.	55 57 57 60 60 64 65 65	20 DEG Note of	FINAL	H	55

+	7
:	
(õ
,	ú
÷	٦
Š	5

2004	

******* MEAN VELO M/S	0.033 0.033 0.033 0.033 0.033 0.033		NCM SETT 1/DA	000000000000000000000000000000000000000	00.0
**************************************	005.4 005.4 005.4 005.4 005.4 005.4 005.4 005.4		COEFFICIENTS ************************************		00.0
TIDAL VELO M/S	000000000000000000000000000000000000000		COLI DECAY 1/DA	000000000000000000000000000000000000000	0.00
TIDAL PRISM CU M	00000000000		MAC PROD	000000000000000000000000000000000000000	
*	22222222	_	ALG PROD	0.22 0.22 0.22 0.22 0.22 0.22 0.23 0.23	
X-SECT AREA SQ M	800.0 800.0 800.0 800.0 800.0 800.0 800.0	800.0	PO4	0.0000000000000000000000000000000000000	0.00
SURFACE AREA SQ M	25974.0 25974.0 25974.0 25974.0 25974.0 25974.0 25974.0	259740.3	DENIT RATE 1/DA	000000000000000000000000000000000000000	0.00
		259;	IENTS * NH3 SRCE *	0.000000000000000000000000000000000000	0.05
VALUES VOLUME CU M	80000. 80000. 80000. 80000. 80000. 80000. 80000.	800000.	NH3 DECAY 1/DA	0.00 61.00 61.00 61.00 61.00 61.00	0.10
ARAMETER WIDTH M	259.7 259.7 259.7 259.7 259.7 259.7 259.7 259.7			0.00	0.00
OLLIC PAR		3.08 259	ORGN OPHYS ORGN DECAY 1/DA	0.03 0.03 0.03 0.03 0.03 0.03 0.03	0.02
YDRAUL		7. 4 N.	ICAL AI CORR SOD *	2.32 2.33 2.33 2.33 2.31 2.31 2.30	0.40
TRAVEL TIME DAYS	0.03	0.35	BIOLOGICAL AND PHYSICAL FULL CORR ORGN ORGN SOD DECAY SETT * * 1/DA 1/DA	2.34 2.33 2.33 2.32 2.32 2.31 2.30 2.30	
**************************************	0.033 0.033 0.033 0.033 0.033 0.033 0.033	0.033	OD CBOD ANBOD AY SETT DECAY DA 1/DA 1/DA	000000000000000000000000000000000000000	0.00
PCT EFF	0000000000		CBOD SETT 1/DA	0.0000000000000000000000000000000000000	0.00
	26.8000 26.8000 26.8000 26.8000 26.8000 26.8000 26.8000 26.8000 26.8000 26.8000			0.23 0.23 0.23 0.23 0.23 0.23 0.23	0.14 'L/DAY
K K K K	88.88.88.88.88.88.88.88.88.88.88.88.88.		REAER RATE 1/DA	0.37 0.37 0.37 0.37 0.37 0.37 0.37	0.30 ** MG/L/D
ENDING DIST KM	26.15 25.05 25.05 25.23 25.55		SAT D.O. MG/L	7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.	VTE
ELEM BEGIN ENDING FLON NO. DIST DIST KM KM CMS	26.25 26.15 25.35 25.35 25.35 25.55 25.55 25.55 25.55		ELEM ENDING SAT REAER CB NO. DIST D.O. RATE DEC MG/L 1/DA 1/	26.150 26.050 25.950 25.850 25.750 25.550 25.550 25.550 25.550 25.550 25.550 25.550 25.550 25.550 25.550	20 DEG C RATE AVG 20 DEG C RATE * G/SQ M/D
ELEM NO.	3732738888	TOT AVG CUM	ELEM E	343273888	20 DEG AVG 20 * G/SQ

25 of 36

2004

30.80

26.8000

66 UPR RCH

26 of 36

NO.	000000000000000000000000000000000000000	**		
COL1 #/100ML	0000000000	CM-II = NCM =		
MACRO **	000000000000000000000000000000000000000	**	M P/R RATIO	000000000000000000000000000000000000000
CHL A UG/L	20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	**	MAC RESP 1/DA	000000000000000000000000000000000000000
PHOS C	0.00 0.12 0.12 0.12 0.12 0.12 0.12	**	MAC GROW 1/DA	0.0000000000000000000000000000000000000
TOTN MG/L	1.67 1.67 1.67 1.67 1.67 1.67 1.67		MAC MAC N&P TOT LIM LIM	99999999999
NO3+2 MG/L	0.00	NCM	MAC MAC N P LIM LIM	888888888888888888888888888888888888888
NH3 MG/L	0.20 0.20 0.20 0.20 0.21 0.21	DATA **	MAC LIT LIM	36 .00 .37 .00 .37 .00 .37 .00 .37 .00 .38 .00 .38 .00 .39 .00 .39 .00 .39 .00 .39 .00 .40 .00
ORGN MG/L	1.38 1.38 1.38 1.38 1.37 1.37	ROPHYTE	ALG A P/R RESP RATIO 1/DA	
EBOD MG/L	1.89 1.85 1.85 1.83 1.83 1.74 1.78	AND MAC	ALG A GROW RE: 1/DA 1/1	88 0.16 88 0.16 88 0.16 88 0.16 88 0.16 89 0.16 80 0.16 80 0.16 81 0.16 82 0.16 83 0.16 84 0.16 85 0.16 86 0.16 87 0.16 88 0.16 89 0.16 80
BOD MG/L	1.89 1.85 1.85 1.83 1.82 1.73 1.74	ALGAE	ALG A TOT GRI LIM 1/1	.10 0.28 .11 0.28 .11 0.28 .11 0.28 .11 0.28 .11 0.29 .11 0.29 .11 0.29
DO MG/L	5.75 5.15 5.15 5.10 5.00 5.00 5.00 5.00	CM-II =	ALG N&P LIM	92. 92. 92. 92. 93. 93. 93. 93.
CM-II	0000000000	C C C C C C C C C C C C C C C C C C C	ALG ALG N P LIM LIM	64. 64. 64. 64. 64. 64. 64. 64. 64. 64.
CM-1	427.0 427.0 427.0 427.0 427.0 427.0 427.0 427.0	* * * * * *	ALG ALG SETT LIT 1/DA LIM	0.21 .18 0.21 .18 0.21 .18 0.21 .18 0.21 .18 0.21 .18 0.21 .18
SALN	00000000000000000000000000000000000000	**	NITR	0.30 0.30 0.30 0.30 0.30 0.30 0.31
TEMP DEG C	30.80 30.80 30.80 30.80 30.80 30.80 30.80 30.80	***	SECCHI DEPTH M	89.0 89.0 89.0 69.0 69.0 69.0 69.0 69.0 69.0
ENDING DIST	26.150 26.050 25.950 25.850 25.750 25.550 25.550 25.450 25.350	* CM-I = cond umhos ** G/CU M	ENDING DIST	26.150 26.050 25.950 25.850 25.750 25.550 25.550 25.550 25.550 25.550 25.350
ELEM NO.	34 34 34 34 34 34 34 34 34 34 34 34 34 3	**************************************	ELEM NO.	66 68 68 68 68 68 68 68 68 68 68 68 68 6

QUAL-TX summer projection simulation, Upper Bayou Des Allemands, Projection Run

0.00

0.00

0.10

1.62

0.50

20 DEG C RATE

NOTE ON NITR PREF: 1.0=NO3; 0.0=NH3

Lake Des Allemands Bayou Des Allemands

FINAL REPORT REACH NO. 8

ELEM NO.

92

M TYPE	FLOW	TEMP DEG C	SALN	CM- I	CM-11	DO MG/L	BOD MG/L	EBOD MG/L	ORGN MG/L	NH3 MG/L	NO3+2 MG/L	PHOS MG/L	CHL A UG/L	COLI #/100ML	NC#
UPR RCH	26.8000	30.80	0.27	427.0	0.0	5.07	1.77	1.7	1.37	0.21	0.09	0.12	29.2	· •	00.00
2004								_bda.out	out						

***	MEAN VELO M/S	0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033		*	∑⊢∢	000000000	-	,	*	NCM	
***				****	NCM SETT 1/DA	00.000000000000000000000000000000000000	0.00	-	****		
**************** HYDRAULIC PARAMETER VALUES ************************************	DISPRSN SQ M/S	4.500 4.500 4.500 4.500 4.500 4.500 4.500 4.500 4.500		BIOLOGICAL AND PHYSICAL COEFFICIENTS *******************************	NCM DECAY 1/DA	0.0000000000000000000000000000000000000	00.00		:********* WATER QUALITY CONSTITUENT VALUES ************************************	COLI	
*****	TIDAL VELO M/S	0.0000000000000000000000000000000000000		*****	COLI DECAY 1/DA	000000000000000000000000000000000000000	0.00		*****	MACRO	
*****	TIDAL PRISM CU M	00000000000		***	MAC PROD	00.000000000000000000000000000000000000			***	₹	
****	F & 3			****	ALG PROD **	0.23 0.23 0.24 0.24 0.24 0.24			****	GH	
****	X-SECT AREA SQ M	800.0 800.0 800.0 800.0 800.0 800.0 800.0	800.0	****	PO4 SRCE *	0.00	00.00		****	PHOS	
****	SURFACE AREA SQ M	25974.0 25974.0 25974.0 25974.0 25974.0 25974.0 25974.0 25974.0 25974.0	259740.3	****	DENIT RATE 1/DA	00.000000000000000000000000000000000000	00.00		*****	TOT	
**			2597	ENTS *	NH3 SRCE	0.00 11.00 11.00 11.00 11.00 11.00	0.05		ES ***	NO3+2	_bda.out
VALUES	VOLUME CU M	80000. 80000. 80000. 80000. 80000. 80000. 80000.	800000.	OEFFIC:	NH3 DECAY 1/DA	61.0 61.0 61.0 61.0 61.0 61.0	0.10		NT VALU	NH3	- <u> </u>
AMETER	WIDTH	259.7 259.7 259.7 259.7 259.7 259.7 259.7 259.7	8	SICAL C	ORGN SETT 1/DA	0.0000000000000000000000000000000000000	00.00		ISTITUEI	ORGN	
.IC PAR	рертн ч	3.3.88 3.3.88 3.3.88 3.3.88 3.3.88 3.3.88 3.3.88 3.3.88 3.3.88 3.3.88 3.3.88 3.3.88 3.3.88 3.3.88	3.08 25	ND PHY	ORGN DECAY 1/DA	0.03 0.03 0.03 0.03 0.03 0.03 0.03	0.02		TY CON	EBOD	
HYDRAUI				ICAL A	SOD *	2.39 2.39 2.38 2.38 2.37 2.37 2.37 2.37 2.37	0.45		A QUAL 1	BOD	
****	TRAVEL TIME DAYS	0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03	0.35	BIOLOG	FULL SOD *	2.39 2.39 2.38 2.38 2.37 2.37 2.37 2.37 2.37			* WATER	0	
****	ADVCTV VELO M/S	0.033 0.033 0.033 0.033 0.033 0.033 0.033	0.033	*****	ANBOD DECAY 1/DA	00.000000000000000000000000000000000000	0.00		****	CM-II	
*****	PCT EFF	0.000000000			CBOD SETT 1/DA	0.00	0.00				
****	FLOW	26.8000 26.8000 26.8000 26.8000 26.8000 26.8000 26.8000 26.8000 26.8000		****	CBOD DECAY 1/DA	0.23 0.23 0.23 0.23 0.23 0.23 0.23	0.14	'L/DAY	*****	CM-1	
****	-			****	REAER RATE 1/DA	0.37 0.37 0.37 0.37 0.37 0.37 0.37	0.30	** MG/L/DAY	****	SALN	
****	ENDING DIST KM	25.15 26.05 24.95 24.75 24.55 24.55 24.35 24.35 24.35 24.35		****	SAT D.O. MG/L	33333333333	: Rate		****	TEMP	
***************************************	BEGIN DIST KM	25.25 25.15 25.05 24.95 24.75 24.55 24.55 24.45 24.45		***********************	ENDING Dist	25.150 26.950 24.950 24.850 24.750 24.550 24.550 24.550 24.550 24.550 24.250		M/D	******************	ENDING	2004
****	ELEM NO.	77 77 78 79 80 81 82 83 84 85	TOT AVG CUM	****	ELEM E	27	20 DEG C RATE AVG 20 DEG C	* G/SQ	****	ELEM EI	23

27 of 36

ELEM ENDING

*	000000000000000000000000000000000000000	**				ds,	* *	0.00		
#/100ML	0000000000	CM-II = NCM = ***********************************				QUAL-TX summer projection simulation, Upper Bayou Des Allemands, Projection Run RFACH INDITS ************************************	COL I #/100ML	0.		
*	0.0000000000000000000000000000000000000	**	M P/R RATIO	000000000000000000000000000000000000000		Bayou De	CHL A UG/L	28.4		
UG/L	29.1 29.1 28.9 28.8 28.7 28.7 28.5 28.5	·** ** **	MAC RESP 1/DA	00.000000000000000000000000000000000000	0.00	Upper B	PHOS C	0.12		
MG/L I	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	**	MAC GROW 1/DA	000000000000000000000000000000000000000	0.00	atīon, ******	NO3+2 MG/L	0.10		
MG/L	76.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.	**	MAC MAC N&P TOT LIM LIM	000000000000000000000000000000000000000		on simul	NH3 N MG/L	0.22		
MG/L	0.00 0.10 0.10 0.10 0.10 0.10	NCM ***	MAC MAC I N P I LIM LIM	888888888888888888888888888888888888888		ojectio	ORGN MG/L	1.35		out
MG/L	0.22 0.22 0.22 0.22 0.22 0.22 0.22	DATA **	MAC	86888888888		ummer pi Run Run	EBOD MG/L	1.65		_bda.out
MG/L	1.37 1.36 1.36 1.36 1.36 1.35	OPHYTE	G A P/R P RATIO A	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		AL-TX SI Djection	BOD MG/L	1.65		
MG/L	5.1.72 1.72 1.73 1.68 1.65 1.65 1.65	ND MACR	G ALG W RESP A 1/DA	51.0 50.0	2 0.10	D P P P P P P P P P P P P P P P P P P P	DO MG/L	5.01		
MG/L	7.1.72 7.1.72 7.1.73 7.1.68 1.65 1.65 1.65	ALGAE A	G ALG T GROW M 1/DA	0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29	1.62		CM-11	0.0		
MG/L	20.05 20.05 20.05 20.05 20.05 10.05 10.05	= ** = II	ALG ALG N&P TOT LIM LIM	66.00.00.00.00.00.00.00.00.00.00.00.00.0		dds sp sp sp sp sp	CM-1	0.		
*	0.0000000000000000000000000000000000000	CM-11	ALG ALG N P LIM LIM	50 50 50 51 51 51 52 52 53 54 54 54 54 54 54 54 54 54 54 54 54 54		**		427.0		
*	0000000000	* * * *	ALG LIT LIM	$\overset{\cdot}{\approx}\overset{\cdot}{\approx}\overset{\cdot}{\approx}\overset{\cdot}{\approx}\overset{\cdot}{\approx}\overset{\cdot}{\approx}\overset{\cdot}{\approx}\overset{\cdot}{\approx}\overset{\cdot}{\approx}\overset{\cdot}{\approx}$.50 0=NH3	ds nds *******	SALN	0.27		
	427.0 427.0 427.0 427.0 427.0 427.0 427.0 427.0	**	R ALG F SETT 1/DA	2.0 0.0 0.0 1.2 1.2 1.2 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	. 0		TEMP DEG C	30.80	,	•
PPT	00000000000000000000000000000000000000	**	NITR PREF	0.31 0.31 0.31 0.31 0.31 0.32	1.0=NO3	Des A u Des	FLOW			
DEG C	30.80 30.80 30.80 30.80 30.80 30.80 30.80 30.80	Se ***	SECCHI DEPTH	0.69 0.69 0.69 0.69 0.69 0.69 0.69	PREF:	Lake Bayo	UL.	26.8000		
DIST	25.150 24.950 24.950 24.750 24.750 24.550 24.350 24.350	* CM-I = cond umhos ** G/CU M	ENDING DIST	25.150 25.050 24.950 24.850 24.750 24.550 24.550 24.550 24.250	EG C RATE On NITR PREF:	FINAL REPORT Lake Des Alleman REACH NO. 9 Bayou Des Allema	TYPE	UPR RCH		2004
NO.	77 7 7 7 8 8 1 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	* CM-I =	ELEM NO.	27	20 DE NOTE	FINAL REACH	ELEM .	98		8

bda.out

MEAN VELO

TIDAL VELO M/S

TIDAL PRISM CU M

X-SECT AREA SQ M

WIDTH

PCT EFF

ENDING DIST KM

ELEM NO.

Σ

M/S

0.037 0.037 0.037 0.037 0.037 0.037 0.037

4.500 4.500 4.500 4.500 4.500 4.500 4.500

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

00000000000

724.6 724.6 724.6 724.6 724.6 724.6 724.6 724.6

259.7 259.7 259.7 259.7 259.7 259.7 259.7 259.7 259.7

0.037 0.037 0.037 0.037 0.037 0.037 0.037

0.000000000

.8000 .8000 .8000 .8000 .8000 .8000 .8000

24.15 23.95 23.95 23.65 23.65 23.65 23.65 23.55 23.55 23.55 23.55

24.25 24.15 24.15 24.05 23.95 23.75 23.65 23.55 23.45 23.55

724.6

, out ga,

36

φ

₹ ₹

CHL A

TOTN MG/1

NO3+2 MG/L

0.00

0.00

MG/L MG/L MG/L

7/50 NG/L

MG/L

WATER QUALITY CONSTITUENT VALUES **************************** BOD MG/L

CM-1 SALN TEMP DEG C

ENDING DIST

ELEM No.

DQ 7/2W CM-II

MG/L

EBOD MG/L

0.037

2.79 5.00

AVG CUM

259.

BIOLOGICAL AND PHYSICAL COEFFICIENTS

SOD * FULL SOD *

2.23

ANBOD DECAY 1/DA

REAER RATE 1/DA

SAT D.O. MG/L

ENDING DIST

ORGN DECAY 1/DA

ORGN SETT 1/DA

NCM SETT 1/DA

NCM DECAY 1/DA

MAC **

ALG PROD **

PO4 *

0.33 0.33 0.33 0.33 0.33 0.33 0.33

0.03 0.03 0.03 0.03 0.03 0.03 0.03

CBOD SETT 1/DA CBOD DECAY 1/DA

0.23 0.23 0.23 0.23 0.23 0.23 0.23

0.41 0.04 0.41 0.41 0.41 0.41 0.41 0.41 4444444444 24.150 24.050 23.950 23.850 23.750 23.650 23.550 23.450 23.350

RATE C RATE DEG C R

20 DEG AVG 20

0.0

0.14

0.00

0.02

MG/L/DAY

PPT DEG DIST

ĕ

ىد	
J	
0	
œ	
又	
	1
-	

000000000	4							_			
0.0000000000000000000000000000000000000	**					, sp	****	Š.	0.00		
0000000000	*****					projection simulation, Upper Bayou Des Allemands,	REACH INPUTS **********************************	COL1 #/100ML		•	
0.0000000000000000000000000000000000000	***	M P/R RATIO	0.0000000000000000000000000000000000000			sayou D <u>e</u>	******	CHL A UG/L	27.9		
28.4 28.3 28.3 28.2 28.1 28.0 27.9	** ** ** ** **	MAC RESP 1/DA	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	00.00		Upper B	****	PHOS C	0.12		
0.00 0.12 0.00 0.00 0.00 0.00 0.00 0.00	**	MAC GROW 1/DA	0.0000000000000000000000000000000000000	0.00		ation,	****	NO3+2 MG/L	0.11		
888888888888	**	MAC MAC N&P TOT LIM LIM	00.00.00.00.00.00.00.00.00.00.00.00.00.			on simul	****	NH3 N MG/L	0.23		
0.	NCM ***	MAC MAC N P LIM LIM				rojecti	****	ORGN MG/L	1.34		out
0.22 0.22 0.23 0.23 0.23 0.23	DATA **	R MAC NO LIT	559 .00 .00 .00 .00 .00 .00 .00 .00 .00 .0			ummer p n Run	****	EBOD MG/L	1.56	e defici	_bda.out
1.35 1.35 1.35 1.35 1.34 1.34 1.34	SOPHYTE	LG A P/R SP RATIO 3A		. 0		QUAL-TX summer Projection Run	PUTS **	BOD MG/L	1.56		
1.64 1.63 1.62 1.61 1.59 1.58 1.57 1.56	AND MAC	LG ALG DW RESP DA 1/DA	52 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	52 0.10		9. 5	EACH IN	DO MG/L	5.00		
1.64 1.63 1.63 1.61 1.59 1.58 1.58 1.57	ALGAE	ALG ALG TOT GROW LIM 1/DA		1.62				CM-11	0.0		
0.000.0	CM-II =	G ALG A N&P T M LIM L	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2				**********************	CM - I	427.0		
0.000000000	~ * ** **	ALG ALG	52 . 7 52 . 7 52 . 7 53 . 7				****				
427.0 427.0 427.0 427.0 427.0 427.0 427.0 427.0 427.0	***	ALG ALG SETT LIT 1/DA LIM	0.23 .20 0.23 .20 0.23 .20 0.23 .20 0.23 .20 0.23 .20 0.23 .20 0.23 .20 0.23 .20	0.50	0.0=NH3	ands ands	***	o,	0.27		
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	**	NITR PREF	0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32	J	1.0=NO3 ; C	s Allemands es Allemands	******	TEMP DEG C	30.80	•	
30.80 30.80 30.80 30.80 30.80 30.80 30.80 30.80 30.80 30.80	**	SECCHI DEPTH M	0.69 0.69 0.69 0.69 0.69 0.70 0.70 0.70 0.70			Lake Des Al Bayou Des A	****	FLOW	26.8000		
24.150 3 23.950 3 23.850 3 23.750 3 23.750 3 23.550 3 23.550 3 23.550 3 23.250 3	* CM-I = cond	ENDING SE DIST C	24.150 C 23.950 C 23.950 C 23.850 C 23.550 C 23.250 C 23.	C RATE	N NITR PREF:	REPORT NO. 10	**************	TYPE	UPR RCH		2004
888 888 893 893 893 894 895	* CM-I = ******	ELEM NO.	88 88 88 88 88 88 88 88 88 88 88 88 88	20 DEG	NOTE ON NITR	FINAL	****	ELEM 1	n 96		ਨ

****	****	******	****************************	*****	****	*****	(H ****	ORAUL I	C PARA	METER	VALUES	****	*****	*****	****	****	****	**************************************	*****
ELEM NO.	BEGIN DIST KM	ENDING DIST KM		FLOW	PCT EFF	ADVCTV VELO M/S	TRAVEL TIME DAYS	. DEРТН		WIDTH M	VOLUME CU M	SUR AI SK	SURFACE X AREA SQ M	X-SECT AREA SQ M	TIDAL PRISM CU M	}	TIDAL VELO M/S	DISPRSN SQ M/S	MEAN VELO M/S
% 6 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	23.23 23.15 22.25 22.25 22.25 22.25 22.25	22.23 22.33 22.33 22.53 22.53		26.8000 26.8000 26.8000 26.8000 26.8000		0.041 0.041 0.041 0.041	0.03 0.03 0.03 0.03	2.50	0 259.7 0 259.7 0 259.7 0 259.7 0 259.7 0 259.7		64935. 64935. 64935. 64935. 64935. 64935.	259		649.4 649.4 649.4 649.4 649.4			0.000	4.500 4.500 4.500 4.500 4.500 4.500	
	22.45 22.35 22.35	22.35 22.35 22.25	26.8000 26.8000 26.8000	0000	0.00	0.041 0.041 0.041	0.03 0.03 0.03 0.28 5.28			•	64935. 64935. 64935. 649351.	25974.0 25974.0 25974.0 259740.3		4.649.4 649.4 649.4 649.4		000	0.000	4.500 4.500 4.500	0.041 0.041 0.041
****** ELEM E NO.	******* ENDING DIST	******* SAT D.O.	**************************************		****** CBOD SETT 1/DA	**************************************	BIOLOGI FULL SOD *	CAL ANI CORR SOD [ID PHYSI ORGN DECAY	ICAL CC ORGN SETT 17DA	DEFFICII NH3 DECAY	ENTS ** NH3 SRCE **	DENIT RATE	****** PO4 SRCE *	**************************************	MAC PROD I	COL I	BIOLOGICAL AND PHYSICAL COEFFICIENTS ************************************	NCM SETT
98 99 99 101 101 22 22 25 101 22 22 25 105 25 25 25 25 25 25 25 25 25 25 25 25 25	23.150 23.050 22.950 22.850 22.750 22.650 22.650 22.450 22.450 22.450	4444444444	0.45 0.45 0.45 0.45 0.45 0.45	0.23	00.00	000000000000000000000000000000000000000	2.	22222222222 222222222222	0.03 0.03 0.03 0.03 0.03 0.03	0.00	0.19 0.19 0.19 0.19 0.19 0.19	0.13 0.13 0.13 0.13 0.13 0.13	0.00	0.00	0.43 0.43 0.43 0.44 0.44 0.44 0.44 0.44	0.00	0.00		6 0000000000000000000000000000000000000
20 DEG C R AVG 20 DEG * G/SQ M/D	20 DEG C RATE AVG 20 DEG C RATE * G/SQ M/D	ATE.	0.14 0.37 ** MG/L/DAY	0.14 L/DAY	0.00	0.00	•	0.35	0.02	0.00	0.10	90.0	00.00	0.00			00.0	00.00	00.00
******* ELEM EN NO.	******* ENDING DIST I	****** TEMP DEG C	****** SALN PPT	CM-1	CM-11 **	F*************************************	** WATER DO E MG/L MG	R QUALIT BOD E MG/L M	TY CONS EBOD MG/L	STITUEN ORGN MG/L	IT VALUE NH3 MG/L	S **** NO3+2 MG/L	******* TOTN MG/L	PHOS MG/L	******* CHL A UG/L	******	**************************************	**************************************	*

31 of 36

_bda.out

2004

0.0000000000000000000000000000000000000	* * * *				'sp	* *** NCW *	0.00		
0000000000	**				projection simulation, Upper Bayou Des Allemands,	KEACH INPUIS ************************************	00.		
0000000000	***************************************	M P/R RATIO			ayon Des	CHL A UG/L	27.5		
27.8 27.8 27.7 27.7 27.6 27.6 27.5	**	MAC RESP 1/DA	000000000000000000000000000000000000000	00.00	Upper B	PHOS C	0.11		
211111111111111111111111111111111111111	*	MAC GROW 1/DA	000000000000000000000000000000000000000	00.00	ation,	NO3+2 MG/L	0.12		
89-1-68 1-69-1-69-1-69-1-69-1-69-1-69-1-69-1-69	11 **	MAC MAC N&P TOT LIM LIM	000000000000000000000000000000000000000		on simul	NH3 N MG/L	0.24		
0.00 111 111 122 123 123 124 125 127 127 127 127 127 127 127 127 127 127	NCM	MAC MAC N P LIM LIM	888888888888888888888888888888888888888		rojectio	ORGN MG/L	1.33 5.00 1		out
0.23 0.23 0.24 0.24 0.24 0.24	DATA **	MAC LIT LIM	86888888888		ummer p n Run	EBOD MG/L	1.48	was since	bda.out
1.34 1.34 1.34 1.33 1.33 1.33 1.33	ROPHYTE	LG A P/R SP RATIO DA	7. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	<u>.</u>	QUAL-TX summer Projection Run	BOD MG/L	1.48		
1.55 1.54 1.53 1.52 1.52 1.50 1.49	AND MAC	ALG ALG GROW RESP 1/DA 1/DA	77 93.7 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	.62 0.10	ਰ ਨ	DO MG/L	5.04		
1.55 1.55 1.53 1.52 1.52 1.49 1.49	ALGAE	ALG A TOT GR LIM 1//	.14 0.37 .14 0.37 .14 0.37 .14 0.37 .14 0.37 .14 0.37 .14 0.37 .14 0.37 .14 0.37 .14 0.37 .14 0.37 .14 0.37 .14	1.			0.0		
5.02 5.02 5.02 5.03 5.03 5.04 5.04	= II - + * * * * * * * * * * * * * * * * * *	ALG N&P LIM	36.36.36.36.36.36.36.36.36.36.36.36.36.3		CUN.	CM-I	427.0 503.0		
0.00	** ***********************************	S ALG ALG	55		, , , ,	SALN	0.28 4;		
427.0 427.0 427.0 427.0 427.0 427.0 427.0 427.0	**	ALG ALG SETT LIT 1/DA LIM	0.26 .22 0.26 .22 0.26 .22 0.26 .22 0.26 .22 0.26 .22 0.26 .22 0.26 .22	0.50					
0.000000000000000000000000000000000000	** ** ** ** **	NITR PREF	0.32 0.32 0.33 0.33 0.33 0.33		Des Allem	TEMP DEG C	30.80	r	
30.80 30.80 30.80 30.80 30.80 30.80 30.80 30.80 30.80 30.80 30.80	** ** ** ** ** **	SECCHI DEPTH M	0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70		Lake Des Allemands Bayou Des Allemands	FLOW	26.8000 0.0005		
23.150 3 22.950 3 22.950 3 22.950 3 22.550 3 22.550 3 22.550 3	* CM-I = cond umbos ** G/CU M *** G/CU M *** G/CU M	ENDING SI DIST	23.150 23.050 22.350 22.850 22.850 22.650 22.650 22.550 22.550 22.550 22.550 22.550	G C RATE	FINAL REPORT Lake Des Allemands REACH NO. 11 Bayou Des Allemand	TYPE	UPR RCH WSTLD		97
%%%%95555 5 5	*******	ELEM E	96 2 97 2 98 2 98 2 99 2 100 2 101 2 102 2 103 2 104 2 104 2 105 2	20 DEG	FINAL RI	ELEM T) NO.	106 UF		2004

ō	
Œ	
℧	
Ω	
^	

2004

MEAN VELO M/S	0.099 0.099 0.099 0.099 0.099		****	NCM SETT 1/DA	0.00	0.00	*	× ×	0.00	
DISPRSN SQ M/S	4.500 4.500 4.500 4.500 4.500 4.500		BIOLOGICAL AND PHYSICAL COEFFICIENTS ******************************	NCM DECAY 1/DA	00000000	0.00	********** WATER QUALITY CONSTITUENT VALUES ******************************	COLI #/100ML	000000	
TIDAL VELO M/S	0.000		*****	COLI DECAY 1/DA	0.00	0.00	***	MACRO **	000000	
TIDAL PRISM CU M	0000000		*****	G MAC D PROD	0.00 0.00 0.00 0.00 0.00 0.00 0.00		**	CHL A UG/L	27.5 27.5 27.5 27.5 27.6 28.0	
			*	ALG PROD **	0.50 0.54 0.44 0.44 0.45 0.50		*			
X-SECT AREA SQ M	271.7 271.7 271.7 271.7 271.7 271.7	271.7	*****	PO4 *	0.0000000000000000000000000000000000000	0.00	**	PHOS MG/L	0.000	
SURFACE) AREA SQ M	10869.6 10869.6 10869.6 10869.6 10869.6 10869.6	76087.0	****	DENIT RATE 1/DA	0.00	0.00	* * *	TOTN MG/L	1.69 1.69 1.69 1.69 1.70	
SUR S		760	ENTS *	NH3 SRCE	0.00 444 444 444 444 444 444 444 444 444	90.0	ES ***	NO3+2 MG/L	0.12 0.12 0.12 0.13	_bda.out
VOLUME CU M	27174. 27174. 27174. 27174. 27174. 27174.	190217.	OEFFICI	NH3 DECAY 1/DA	0.19 0.19 0.19 0.19 0.19	0.10	NT VALU	NH3 MG/L	0.24 0.24 0.25 0.25 0.25	3
WIDTH М	108.7 108.7 108.7 108.7 108.7 108.7	108.7	SICAL C	ORGN SETT 1/DA	0.0000000000000000000000000000000000000	00.00	IST I TUEI	ORGN MG/L	1.33 1.33 1.33 1.32 1.32	
DEPTH W	2.50 10 2.50 10 2.50 10 2.50 10 2.50 10 2.50 10	2.50 10	ND PHY	ORGN DECAY 1/DA	0.03 0.03 0.03 0.03 0.03	0.02	ITY COM	EBOD MG/L	1.48 1.48 1.50 1.58	
		8 9	ICAL A	CORR SOD	2.01 2.01 2.01 2.02 2.04 2.04	0.30	c QUAL	BOD MG/L	.48 .48 .50 .58 .81	
TRAVEL TIME DAYS	0.0 0.0 0.0 0.0 0.0	0.08	BIOLOG	FULL SOD *	2.01 2.01 2.01 2.02 2.02 2.04		"WATER	DO MG/L M	5.04 5.05 1.05 5.05 1.05 1.05 1.05 1.05	
ADVCTV VELO M/S	0.099 0.099 0.099 0.099 0.099			ANBOD DECAY 1/DA	000000000000000000000000000000000000000	00.00	**			
PCT A	0000000	0	*****	CBOD SETT 1/DA	00.000000000000000000000000000000000000	00.00	**	CM-11	0.0000	
FLOW F	26.8000 26.8000 26.8000 26.8000 26.8000 26.8000			CBOD DECAY 1/DA	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.14		CM *	427.0 427.1 427.3 428.0 430.1 436.9	
_	26.85 26.85 26.85 26.85 26.85 26.85 26.85		*****	REAER RATE 1/DA	0.45 0.45 0.45 0.45 0.45	0.37	** MG/L/DAY	SALN	00.3	
ENDING DIST KM	22.15 21.95 21.95 21.95 21.75 21.65 21.55		*****	SAT D.O. MG/L	7.7.7.7.7.7.7.7.4.4.4.4.4.4.4.4.4.4.4.4	ATE	**	TEMP S	30.80 30.80 30.80 30.80 30.80 30.80	
BEGIN DIST KM	22.25 22.15 22.05 21.95 21.85 21.75		法法法律法法法法法法法法法法法法法法法法法法法法法法法法法法法法法法法法法法法	ENDING Dist	22.150 22.050 21.950 21.850 21.750 21.550	C RATE Deg C Rate	* G/SQ M/D	ENDING DIST 1	22.150 22.050 21.950 21.850 21.750 21.650	750
ELEM NO.	106 107 108 110 111	TOT AVG CUM	****	ELEM E	106 2 107 2 108 2 109 2 110 2 111 2	20 DEG AVG 20	* G/SQ	ELEM E	108 108 109 110 110 111	2004

33 of 36

23.150 30.80 0.3

36	
οŧ	
35	

, bda.out

2004

12 21.550 30	30.80	0.3	458.5	0.0	5.10	2.57	2.57	1.30	0.33	0.09	1.72	0.12	29.1	0.0	0.	00.00
CM-I = cond umhos * G/CU M				ਣ	CM-II =					S	NCM II					

**** ELEM	******* ENDING	**************************************	***** NITR	**************************************	*****	**** AI G	****	* * *	* ALG	NE AND	MACROP	HYTE DAT	TA **	* * .	***	****	*****	* *	* * *	ALGAE AND MACROPHYTE DATA **********************************	*
_	IST	DEPTH	PREF	SETT 1/DA	LI	Z E	LI P	N&P 1	T0T MI	GROW 1/DA	RESP 1/DA	RATIO	LIT	I N I		N&P TOT LIM LIM	1/DA		RESP R/	RATIO	
22	. 150	0.70	0.33	0.26	.22	.55	7.		14	0.37	0.16									90	
2	.050	0.70	0.33	0.26	.22	.55	7.	.63	.14	0.37	0.16	1.82	8	8	0	00.				00	
'n	21.950	0.70	0.33	0.26	.22	.55	7,		14	0.37	0.16							_		.00	
'n	1.850	0.70	0.32	0.26	-25	55	7.		14	0.37	0.16							_		00.	
'n	1.750	0.70	0.32	0.26	.22	.55	7.		1,	0.37	0.16							_		90.	
'n	1.650	0.70	0.29	0.26	.22	.56	7,		14	0.38	0.16							_		90.	
~	.550	69.0	0.21	0.26	.22	.58	-74		14	0.38	0.16						00.00	00.00	_	00.00	
J	20 DEG C RATE			0.50						1.62	0.10						00.00	0.00	8		
Z	NITR P	NOTE ON NITR PREF: 1.0=NO3	.0=NO3 ;	0.0=NH3	오																
\times \vdash	summer ion Run	QUAL-TX summer projection si Projection Run		mulation, Upper Bayou Des Allemands,	ה, כ	pper	Bayı	on De	s All	emands											

INPUT/OUTPUT LOADING SUMMARY

20,800 1535.1 877.8 3658.5 277.9 0,000 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0		FLOW	DO KG/D	800 KG/D	ORG-N KG/D	NH3-N KG/D	NO3-N KG/D	PHOS KG/D	CHL A KG/D	NCM
OUTFLOW 0.000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	HEADWATER INFLOW	26.800	15537.1	8775.8	3658.5	277.9	115.8	277.9	118091.5	0.0
DOUTE LOW 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	INFLOW	0.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PUT	. OUTFLOW	0.000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.001 0.1 2.9 0.2 0.5 0.5 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	INPUT		0.0	1597.5	0.0					0.0
LOWER BNDRY		0.001	0.1	2.9	0.2	0.5	0.5	0.2	0.0	0.0
LOWER BNDRY		0.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
HRU LOWER BNDRY 121.8 2574.4 -62.3 205.2 -77.8 6.7 14308.0 -4308.0 -4306.0 -4306.0 -4306.0 -77.8 6.7 14308.0 -402.8 205.2 -77.8 6.7 14308.0 -402.8 -77.8 6.7 14308.0 -402.8 -77.8 6.7 14308.0 -77.8 6.7 14308.0 -402.8 -77.8 6.7 14308.0 -77.8 6.7 14308.0 -77.8 6.7 14308.0 -77.8 6.7 14308.0 -77.8 6.7 14308.0 -77.8 6.7 14308.0 -77.8 6.7 14308.0 -77.8 14308	IU LOWER BNDRY	-26.801	-11814.8	-5954.9	-3009.0	-770.8	-201.0	-270.6	-67438.7	0.0
ENTHAL 4830.6 -4830.6 -6895.7 -6995.7 -6995.7 -0.0 -6895.7 -0.0 -0.0 -587.4 -1751.8 -1751.8 -404.6	THRU LOWER BNDRY		121.8	2574.4	-62.3	205.2	-77.8	2.9	3964.0	0
ENTHAL -4830.6 DECAY -6995.7 0.0 D DECAY 0.0 D DECAY 0.0 DROLYSIS 0.0 TILING -587.4 -404.6			14308.0) i			2
-6995.7 -6995.7 0.0 0.0 0.0 0.0 -587.4 587.4 -1751.8	BENTHAL		-4830.6							
0.0 0.0 0.0 0.0 0.0 -587.4 587.4 -1751.8 -404.6	DECAY		-6995.7	-6995.7						÷
0.0 0.0 -587.4 587.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	פי		0.0	0.0						
0.0 -587.4 587.4 0.0 0.0 -1751.8 -404.6	OD DECAY			0.0						
0.0 0.0 0.0 -1751.8 -404.6	YDROLYSIS		0.0		-587.4	587.4				
9-707-	ETTLING				0.0	0.0				
			-1751.8			-404.6	9.404			

0.0

165429.3 -71276.9 -148728.0

0.0

59.2 -129.0 55.6

0.0

342.4

0.0

0.0

399.6 287484.8 -399.6 -287443.6

0.0

41.2

0.0

0.0

35 of 36

_bda.out

21,550 30.80 0.3

112

2004

-242.0 520.8 -520.8 -601.7 363.5 1776.8 -1777.0 0.0 -0.2 3658.8 -3658.8 0.0 12950.5 0.0 15881.2 -8553.2 -11898.2 0.0 0.0 45848.3 3.9 26.801 -26.801 0.000EXECUTION COMPLETED BACKGROUND NH3 SOURCE DENITRIFICATION PHOSPHORUS SOURCE ALGAE PHOTOSYNTHESIS ALGAE SETTLING MACRO PHOTOSYNTHESIS NCM DECAY NCM SETTLING NET CONVERGENCE ERROR TOTAL INPUTS
TOTAL OUTPUTS

TMDL Calculations

NONPOINT SOURCES:

Loads from Benthic Nutrient Sources and NPS Mass Loads:

NPS mass	kg/day)	Organic N	0	0	0	0	0	0	0	0	0	0	0
NPS	loads (kg/day)	CBODn	0.009	450.0	300.0	75.0	15.0	15.0	15.0	37.5	37.5	37.5	15.0
-oads (kg/day) from	benthic sources	Phosphorus	18.07	5.35	16.72	1.18	1.04	1.04	1.04	0.78	0.26	0.26	0.08
Loads (kg/	benthic a	Ammonia N	18.07	5.95	41.81	7.05	11.70	12.98	12.99	12.99	14.28	15.58	4.95
source	m2/day):	Phosphorus	0.01	600.0	0.008	0.005	0.004	0.004	0.004	0.003	0.001	0.001	0.001
Benthic source	rates (g/m2/day)	Ammonia N	0.01	0.01	0.02	0.03	0.045	0.05	0.05	0.05	0.055	90.0	0.065
Surface	Area	(m2)	1807403.5	594841.6	2090300.6	235006.5	260091.5	259645.8	259740.3	259740.3	259726.8	259740.3	76087.0
		Reach	_	2	3	4	2	9	2	8	6	10	11

Loads from Headwaters and Tributaries

Totals:

0.00

1597.50

45.82

158.35

	Flow		Conc	Concentrations (mg/L)	g/L)				Loads (kg/day		
Name of inflow	(m3/sec)	CBODn	Organic N	Ammonia N	NO2+NO3 N	Ammonia N NO2+NO3 N Phosphorus	CBODu	Organic N	Ammonia N	Ammonia N NO2+NO3 N Phosphorus	Phosphorus
Headwater (from Lac des Allemands)	26.8	3.79	1.58	0.12	0.05	0.12	8775.82	3658.52	277.86	115.78	277.86
Providence Canal	0.0						0.00	00.00	0.00	0.00	0.00
Totals:							8775.82	3658.52	277.86	115.78	277.86
Total Nonpoint Source Loading:	e Loading:						10373.32	3658.52	436.21	115.78	323.68
Nonpoint Source Margin of Safety and Future Growth = Nonpoint Source Load allocation =	rgin of Safety td allocation =	and Future G	rowth =	20% 80%	11 11		2074.66 8298.66	731.70 2926.82	87.24 348.97	23.16 92.62	64.74 258.94

Flows and Concentrations from Oxygen Demanding Point Sources:

	Expected	Expected fl	Expected flow divided						
	flow	by 0.80 (for 20% MOS)	20% MOS)	CBOD5	CBODu	Organic N	Organic N Ammonia N NO2+NO3 N Phosphorus	NO2+NO3 N	Phosphorus
Name of discharger	(MGD)	(MGD)	(m3/sec)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
Collier's Fisheries	0.01	0.0125	0.00055	30	69	2	10	10	9
Bridgeline Gas Distr.	0.001	0.00125	90000.0	30	69	9	10	10	9

Notes: 1. Expected flows are assumed values (no information concerning effluent flow rates was available).
2. Conc's for CBOD5, organic N, and ammonia N are based on guidance in LTP assuming secondary treatment with a mechanical system.
3. Concentrations for NO2+NO3 and phosphorus are assumed values.

Loads from Point Sources:

	Flow		Con	Concentrations (mg/L)	J/bl				Loads (kg/day)		
Name of discharger (m3/sec)	(m3/sec)	CBODu Organic I	_	Ammonia N	Ammonia N NO2+NO3 N Phosphorus	Phosphorus	CBODn	Organic N	Organic N Ammonia N NO2+NO3 N Phosphorus	NO2+NO3 N	Phosphorus
Collier's Fisheries	0.00055	69	5	10	10	2	3.28	0.24	0.48	0.48	0.24
Bridgeline Gas Distr.	0.00005	69	5	10	10	5	0.30	0.02	0.04	0.04	0.02
Total Loads:							3.58	0.26	0.52	0.52	0.26
Point Source Margin of Safety and Future Growth = Point Source Load allocation =	of Safety and location =	Future Grow	= \$	20% 80%	11 11		0.72 2.86	0.05	0.10	0.10	0.05

OVERALL SUMMARY

		_	Loads (kg/day	(
	CBODn	Organic N	Ammonia N	NOS+NO3 N	Phosphorus
Point source wasteload allocation (WLA)	2.86	0.21	0.42	0.42	0.21
Nonpoint source load allocation (LA)	8298.66	2926.82	348.97	92.62	258.94
Explicit Margin of Safety (10%)	1037.69	365.88	43.67	11.63	32.40
Future Growth (10%)	1037.69	365.87	43.67	11.63	32.39
Total maximum daily load (TMDL)	10376.90	3658.78	436.73	116.30	323.94

323.94

116.30

436.73

3658.78

Sums for error checking: 10376.90

FILE: R:\PROJECTS\2110-611\CD_DES_ALL\APP Z TMDL CALCS\TMDL_CALCS_020201.XLS

Ammonia Toxicity Calculations

TABLE AA.1. AMMONIA TOXICITY CALCULATIONS FOR UPPER BAYOU DES ALLEMANDS

Equations are from 1999 Update of Ambient Water Quality Criteria for Ammonia (EPA-822-R-99-014, Dec. 1999).

Use chronic criterion when fish early life stages are present (as mentioned on page 88, this is the same as CCC for early life stages absent when temp > 15°C)

CCC, in mg N/L = $[0.0577/(1+10^{7.688-pH}) + 2.487/(1+10^{pH-7.688})] * MIN [2.85, 1.45*10^{0.028*(25-T)}]$

Note: CCC is the Chronic Criterion Concentration

pH value used in this calculation is average summer value for LDEQ Station 0292 (see data below). Temperature value used in calculation is 90th percentile summer value for LDEQ station 0292.

Conner	Average pH	Temperature	Calculated CCC
Season	(su)	(10)	(mg N/L)
Summer	7.51	30.8	1.51

pH values for LDEQ Station 0292:

Summer (May - Oct):

Date	Value
6/11/1991	7.30
10/31/2000	6.71
10/3/2000	7.36
9/12/2000	6.97
8/8/2000	6.85
7/11/2000	7.76
6/13/2000	7.65
8/13/1991	8.30
10/15/1991	7.80
6/16/1992	9.00
8/11/1992	6.80
10/13/1992	6.80
6/15/1993	7.40
8/10/1993	7.90
10/12/1993	7.70
6/14/1994	6.90
8/9/1994	7.30
10/11/1994	7.40
6/13/1995	7.20
8/15/1995	7.30
10/10/1995	7.70
6/11/1996	8.30
8/13/1996	7.90
10/15/1996	7.80
6/10/1997	7.00
8/12/1997	7.70
10/14/1997	7.30
5/9/2000	8.23

Average: 7.51

Responses to Public Comments

COMMENTS AND RESPONSES BAYOU DES ALLEMANDS TMDLs FOR DO AND NUTRIENTS March 25, 2005

EPA appreciates all comments concerning these TMDLs. Comments that were received are shown below with EPA responses or notes inserted in a different font.

COMMENTS FROM LOUISIANA DEPARTMENT OF ENVIRONMENTAL QUALITY (LDEQ):

1. <u>Page i - Executive Summary:</u> The first paragraph states, "This report presents a TMDL that has been developed for dissolved oxygen (DO) for Bayou des Allemands (subsegment 020201) in the Ouachita River Basin in northern Louisiana. This paragraph should be revised to list the correct subsegment, basin, and geographic location.

Response: These corrections have been made.

2. <u>Page 2-5 - 2.3 Point Sources:</u> A list of the dischargers should be included in the report. The list should indicate if the facility was modeled or just included in the TMDL. The list should also indicate the permit limits as a result of this TMDL. Any resulting permit limits should be presented in the Executive Summary and section 7.8 Model Results for Projection.

Response: The point source list in Appendix A indicates which facilities were modeled, which ones were included in the TMDLs, and the effluent concentrations that were simulated in the model (which were set equal to permit limits). As stated in the body of the report, the modeling and TMDLs assume no changes to current permit limits for point source discharges.

3. Page 8-1-8.0 TMDL Calculations: This section should include discussion concerning how small dischargers should be allocated. An example used by LDEQ is as follows:

"The nonconservative behavior of dissolved oxygen allows many small to remote point source dischargers to be assimilated by their receiving waterbodies before they reach the modeled waterbody. These dischargers are said to have very little to no impact on the modeled waterbody and therefore, they are not included in the model and are not subject to any reductions based on this TMDL. These facilities are permitted in accordance with state regulation and policies that provide adequate protective controls. New similarly insignificant point sources will continue to be issued permits in this manner. Significant existing point source dischargers are either included in the TMDL model or are determined to be insignificant by other modeling. New significant point source dischargers would have to be evaluated individually to determine what impact they have on the impaired waterbody and the appropriate controls."

Response: This text has been added to Section 8.2 of the report.

4. <u>8.5 Ammonia Toxicity Concerns:</u> Since this waterbody was not listed on the 303(d) list for ammonia, this discussion is unnecessary and should be deleted from the report.

Response: Ammonia toxicity calculations were performed to ensure that the ammonia loadings that will maintain DO standards will not cause any exceedences of the ammonia toxicity criteria. National guidance for ammonia toxicity was used in the absence of any numerical state water quality standards for ammonia. EPA believes this evaluation offers assurances that waters will continue to be free from the effects of toxic substances.

5. <u>8.5 Ammonia Toxicity Concerns:</u> 4th Line, delete Ouachita River.

Response: This correction has been made.

6. Page 9-1-9.0 Other Relevant Information: This section should be updated to include the new 4-year sampling cycle.

Response: Section 9.0 describes LDEQ's 4-year sampling cycle.

7. <u>Dissolved Oxygen / Reaeration:</u> It is stated, "the long term average wind speeds for each month of the year for New Orleans were examined and the lowest values within each season were used to calculate the minimum KL values". A more representative approach would have been to use a seasonal average for each season. DEQ does not use extreme limits for input values for any of the modeling parameters.

Response: Section 303(d) of the Clean Water Act and federal regulations at 40 CFR 130.7 both require TMDLs to account for critical conditions. Using a wind speed that is averaged over a month is not considered extreme, and is consistent with using the 90th percentile temperature and critical low flows.

8. <u>BOD Calculations:</u> Total BOD was calculated using a 20-day cycle. It is the general practice of LDEQ to use a 60 cycle.

Response: Resources were not available for 60 day BOD measurements.

Use of 20 day BOD data is widely accepted for TMDLs and is considered appropriate for these TMDLs.

- 9. <u>BOD Calculations:</u> The CBOD values calculated using the BOD Analysis spreadsheet were overestimated due to the fact that NO2+NO3 data values were not used. The resulting ultimate CBOD values were actually the total ultimate BOD values. At the same time, the nitrogen series was also being simulated. In effect, the nitrogen was expressed in two different parameters.
- Response: The CBOD values were calculated from the spreadsheet using CBOD values measured in a lab with a nitrogen inhibitor present in the samples. Therefore, the BOD in the model was truly CBOD, and nitrogenous oxygen demand was simulated only through nitrification of ammonia.
- 10. <u>BOD Calculations:</u> Settling rates were not used in the model. The effect of settling on dissolved oxygen was simulated by SOD. This is not the general practice of LDEQ.
- Response: No available information indicated the necessity for including settling rates for BOD. However, settling was simulated for algae.
- 11. <u>BOD Calculations</u>: Modified decay rates for CBOD were used rather than the bottle rates due to the fact that the samples "were seeded". This is not the general practice of LDEQ. However, average values may be used for reaches with similar water quality.
- Response: For the Bayou des Allemands model, the laboratory CBOD decay rates were averaged over multiple stations but not modified due to seeding of the samples. This comment appears to be based on the Lake Cataouatche model rather than the Bayou des Allemands model.
- 12. <u>BOD Calculations:</u> Bottle decay rates were apparently not calculated for Organic Nitrogen. This is not the general practice of LDEQ.
- Response: For most TMDLs, organic nitrogen decay rates are not determined from laboratory data. The use of a reasonable decay rate from published literature was considered appropriate for these TMDLs.
- 13. <u>Vector Diagram:</u> A vector diagram should be presented in the report.
- Response: A vector diagram was not considered necessary because the Bayou des Allemands model consists of one main stem with no branches.
- 14. <u>Calibration, Verification, Recalibration, and Projection Graphs:</u> Calibration, verification, and recalibration graphs for dissolved oxygen, CBODU, orthophosporus, and the nitrogen series should be presented in the body of the report.
- Response: These graphs can be viewed in the Appendices. There are no requirements for placing graphs in the body of the report.

15. <u>Calibration, Verification, Recalibration, and Projection Graphs:</u> Projection graphs for dissolved oxygen should be presented in the body of the report.

Response: These graphs can be viewed in the Appendices. There are no requirements for placing graphs in the body of the report.

16. <u>Winter Projection:</u> A winter projection should have been performed. LDEQ issues permits based on seasonality.

Response: As discussed in Section 7.1 of the report, summer is the most critical season for meeting the year round standard for DO for this subsegment. Therefore, the summer simulation satisfies the seasonality requirements of the Clean Water Act. The available information for point source discharges indicated that the facilities discharging to this subsegment do not have seasonal permit limits. If any of these facilities wishes to pursue seasonal permit limits, then LDEQ or the permittee can re-run the model to develop seasonal wasteload allocations.

COMMENTS FROM THE GULF RESTORATION NETWORK (GRN):

1. <u>Lack of Implementation Plan and Reasonable Assurances:</u> There is no implementation plan described in these TMDLs at all. I was unable to find any indication of how the necessary reductions in nonpoint source pollution will be obtained. According to EPA guidance, waters impaired primarily by nonpoint sources require a description of its plan for reducing load allocations. Not only do these TMDLs not describe specific BMPs that will be used to achieve the prescribed manmade nonpoint source reductions, there is also no indication of a timeframe for implementation.

Response: Current federal regulations and guidance do not require TMDLs to include implementation plans. The TMDLs in this report do not include implementation plan components, such as descriptions of specific BMPs for reducing nonpoint source oxygen demand or timeframes for implementing BMPs. Although it is EPA's desire for implementation plans to be developed and carried out these TMDLs, time and money were not available to develop implementation plans.

2. <u>Lack of Implementation Plan and Reasonable Assurances:</u> According to EPA guidance, a TMDL can only rely on nonpoint source reductions if reasonable assurances that the nonpoint source load allocations will be achieved are provided. In these TMDLs, there are no reasonable assurances that the 75% nonpoint source reductions for Bayou Des Allemands and 60% nonpoint reductions reductions for Bayou Verret will be achieved.

Response: EPA guidance for TMDLs requires assurances of nonpoint source reductions ONLY when point sources are given less stringent WLAs based on assumptions that nonpoint source loads will actually be reduced. The point source discharges in this subsegment represented an insignificant fraction of the total oxygen demand and their WLAs were not contingent upon any reductions of nonpoint source loads.

3. <u>Narrative Nutrient Criteria Missing from Bayou Des Allemands TMDL:</u> I was unable to find any reference to Louisiana's narrative nutrient criteria in the Bayou Des Allemands TMDL. This seems unusual considering that the TMDL was developed for both dissolved oxygen and nutrients, and the narrative criteria were included in the Lake Cataouatche and Tributaries TMDL. Therefore, we request that this information also be added to the Bayou Des Allemands TMDL.

Response: A description of Louisiana's narrative nutrient criteria has been added to Section 2.2 of the report.

COMMENTS FROM LOUISIANA STATE UNIVERSITY AGRICULTURAL CENTER:

1. Area land use is listed at: 54.8% fresh water marsh; 24.2% wetland forest; 11.9 % water; 5.8% agricultural; and 0.4% urban and the TMDL calls for a 75% reduction in NPS loadings to reach a DO Standard of 5 mg/L. This low DO is clearly a natural condition as total elimination of all loadings from the small percentage of the land area affected by man could not reach one third of the required reductions. The DO standard needs to be revised and lowered to one appropriate for this type system and topography.

Response: In accordance with federal regulations, these TMDLs were developed based on allowable loadings to maintain the existing DO standard (5 mg/L). Even though this subsegment has large percentages of marsh and forest, it is still affected by human alterations to the environment, particularly hydromodification (e.g., lack of inflow of Mississippi River water that is now controlled by levees, dredging of numerous canals and channels, etc.). If LDEQ changes the standards for this subsegment, then these TMDLs can be revised accordingly.

2. All of the data used in making the TMDL determinations are in Appendices which were not available. The Table of Sensitivities used in evaluating the model and showing the most important factors apparently was not done as it is not included and not listed as an Appendix.

Response: All appendices are available (in hard copy format) from EPA upon request. A sensitivity analysis has been added to the report.

3. Again, we request that all of the DO standards for Louisiana streams in low profile areas be reexamined and set at appropriate levels and not an arbitrary numeric standard of 5 mg/l.

Response: As mentioned above, TMDLs must be developed based on existing standards. If LDEQ changes the standards for this subsegment, then these TMDLs can be revised accordingly.

COMMENTS FROM BARATARIA TERREBONNE NATIONAL ESTUARINE PROGRAM (BTNEP):

1. The Barataria-Terrebonne National Estuary Program (BTNEP) requests an extension of the comment period for the TMDL for Bayou des Allemands and Lake Cataouatche noticed in the December 1, 2004 Federal register (Volume 69, Number 230). This TMDL was prepared by a contractor for Region 6 EPA. BTNEP will require more time for a thorough review of these TMDLs and for preparation of comments. With the holidays of this month, a 30 day comment period is insufficient as many staff were out of the office. BTNEP would like to thoroughly review this draft of the TMDL. Therefore, we respectfully request that you extend the comment period for an additional 30 days through February 2, 2005.

BTNEP also requests that EPA Region 6 notify the plaintiffs in the TMDL lawsuit of the need to extend the comment period and to request an extension of the consent decree deadline for the completion of the Barataria Basin TMDLs

The BTNEP is very concerned about the potential impacts that TMDLs for nutrients and sediment may have on Louisiana's coastal restoration efforts. The BTNEP is intimately involved in coastal restoration efforts and represents a partnership of 42 public and private agency partners in the effort for coastal and estuarine restoration. Although we do not speak for each agency partner, we have serious concerns about the effect that TMDLs may have on current and future coastal restoration efforts.

We are very concerned that if the TMDLs are enforced on the river diversion projects that are currently being designed to mimic the historical, natural freshwater inputs, they could limit the amount of Mississippi River water used for restoration in the Barataria Basin due to limitations on the sediment and nutrients in river water. The BTNEP Management Conference considers the re-establishment of natural riverine inputs to be one of our most valuable restoration tools. We believe that a significant limitation placed on our ability to divert reasonable amounts of Mississippi River water into the Barataria Basin for wetlands restoration purposes could seriously compromise our efforts

Response: Text has been added to the Executive Summary and to Section 8 of the report explaining that EPA believes that restoration of these coastal wetlands involves supplying nutrients through managed Mississippi River diversions. The report also states that low flow was determined to be the critical condition for these TMDLs. Although there are no current diversions of Mississippi River water into Bayou des Allemands, modeling results from this project indicate that if Mississippi River water was diverted into Bayou des Allemands, it should not cause any detrimental effects to DO concentrations in Bayou des Allemands. Therefore, these TMDLs are not intended to limit future diversions of Mississippi River water for coastal restoration.